How Do ATP-Driven Ion Membrane Transport Systems Realize High Efficiency in Both Energy Conversion and Flow Rate?

  • Kurt R. H. Repke
  • Richard Grosse


One method universally available to organisms for improving their survival value in evolution was to improve the efficient use of the high-grade energy of ATP. Roughly, the faster the process of energy release, the more high-grade energy is likely to be wasted in useless entropy production. In sudden irreversible processes, high-grade energy is degraded to heat. In smooth reversible processes, however, the energy release takes an infinite length of time. Hence, both energetic and kinetic efficiency are required to yield improved survival value (cf. Lumry and Biltonen, 1969; Welch, 1977).


Gibbs Energy Creatine Kinase Catalytic Center Nucleoside Triphosphate Plasma Membrane Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolfsen, R., and Moudrianakis, E. N. (1976). Arch. Biochem. Biophys. 172, 425–433.CrossRefGoogle Scholar
  2. Albery, W. J., and Knowles, J. R. (1976). Biochemistry 15, 5632–5640.Google Scholar
  3. Brinley, F. J., and Mullins, L. J. (1968). J. Gen. Physiol. 52, 181–211.CrossRefGoogle Scholar
  4. Caldwell, P. C. (1969). Curr. Top. Bioenerg. 3, 251–268.Google Scholar
  5. Cohn, M. (1979). In NMR and Biochemistry (S. J. Opella and P. Lu, eds.), pp. 7–27, Dekker, New York.Google Scholar
  6. Dahms, A. S., and Boyer, P. D. (1973). J. Biol. Chem. 248, 3155–3162.Google Scholar
  7. Dahms, A. S., Kanazawa, T., and Boyer, P. D. (1973). J. Biol. Chem. 248, 6592–6595.Google Scholar
  8. De Donder, T., and van Rysselberghe, P. (1936). Thermodynamic Theory of Affinity. Stanford University Press, Stanford, Calif.Google Scholar
  9. Degani, C., and Degani, Y. (1980). J. Biol. Chem. 255, 8221–8228.Google Scholar
  10. DiPolo, R. (1979). J. Gen. Physiol. 66, 795–813.Google Scholar
  11. Dittrich, F., and Repke, K. R. H. (1979). Acta Biol. Med. Ger. 38, K5 - K11.Google Scholar
  12. Dittrich, F., Schön, R., and Repke, K. R. H. (1974). Acta Biol. Med. Ger. 33, K17 - K25.Google Scholar
  13. Eckert, K., Grosse, R., Levitsky, D. O., Kuzmin, A. V., Smirnov, V. N., and Repke, K. R. H. (1977). Acta Biol. Med. Ger. 36, Kl-K10.Google Scholar
  14. Fossel, E. T., and Solomon, A. K. (1979). Biochim. Biophys. Acta 553, 142–153.CrossRefGoogle Scholar
  15. Gillespie, P., Hoffmann, P., Klusacek, H., Marquarding, D., Pfohl, S., Ramirez, F., Tsolis, E. A., and Ugi, J. (1971). Angew. Chem. 83, 691–721.CrossRefGoogle Scholar
  16. Grosse, R., Eckert, K., Malur, J., and Repke, K. R. H. (1978). Acta Biol. Med. Ger. 37, 83–96.Google Scholar
  17. Grosse, R., Rapoport, T., Malur, J., Fischer, J., and Repke, K. R. H. (1979). Biochim. Biophys. Acta 550, 500–514.CrossRefGoogle Scholar
  18. Grosse, R., Spitzer, E., Kupriyanov, V. V., Saks, V. A., and Repke, K. R. H. (1980). Biochim. Biophys. Acta 603, 142–156.CrossRefGoogle Scholar
  19. Gutfreund, H., and Trentham, D. R. (1975). Ciba Found. Symp. 31, 69–86.Google Scholar
  20. Hasselbach, W. (1979). Top. Curr. Chem. 78, 1–56.CrossRefGoogle Scholar
  21. Hegyvary, C., and Post, R. L. (1971). J. Biol. Chem. 246, 5234–5240.Google Scholar
  22. Hill, T. L. (1977). Trends Biochem. Sci. 1977, 204–207.Google Scholar
  23. Huxley, A. F. (1975). Ciba Found. Symp. 31, 401.Google Scholar
  24. Karlish, S. J. D., and Glynn, I. M. (1974). Ann. N.Y. Acad. Sci. 242, 461–470.CrossRefGoogle Scholar
  25. Kayalar, C., Rosing, J., and Boyer, P. D. (1977). J. Biol. Chem. 252, 2486–2491.Google Scholar
  26. Kedem, O., and Caplan, S. R. (1965). Trans. Faraday Soc. 21, 1897–1911.CrossRefGoogle Scholar
  27. Kemeny, G. (1974). Proc. Natl. Acad. Sci. USA 71, 3669–3671.CrossRefGoogle Scholar
  28. Kennedy, B. G., and de Weer, P. (1977). Nature (London) 268, 165–167.CrossRefGoogle Scholar
  29. Knowles, J. R. (1980). Annu. Rev. Biochem. 49, 877–919.CrossRefGoogle Scholar
  30. Krebs, H. A. (1966). In Current Aspects of Biochemical Energetics (N. O. Kaplan and E. P. Kennedy, eds.), pp. 83–95, Academic Press, New York.Google Scholar
  31. Lowe, G., and Sproat, B. S. (1980). J. Biol. Chem. 255, 3944–3951.Google Scholar
  32. Lunuy, R., and Biltonen, R. (1969). In Structures and Stability of Biological Macromolecules (S. N. Timasheff and G. D. Fassman, eds.), pp. 65–212, Dekker, New York.Google Scholar
  33. Mitchell, P. (1979). Eur. J. Biochem. 95, 1–20.CrossRefGoogle Scholar
  34. Mmller, J. V., Lind, K. E., and Andersen, J. P. (1980). J. Biol. Chem. 255, 1912–1920.Google Scholar
  35. Mualem, S., and Karlish, S. J. D. (1979). Nature (London) 277, 238–240.CrossRefGoogle Scholar
  36. Mullins, L. J., and Brinley, F. J. (1969). J. Gen. Physiol. 53, 704–740.CrossRefGoogle Scholar
  37. Parker, J. C., and Hoffman, J. F. (1967). J. Gen. Physiol. 50, 893–916.CrossRefGoogle Scholar
  38. Repke, K. R. H. (1977). In Biochemistry of Membrane Transport (G. Semenza and E. Carafoli, eds.), pp. 363–373, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  39. Repke, K. R. H. (1980). In Cell Compartmentation and Metabolic Channeling (L. Nover, F. Lynen, and K. Mothes, eds.), pp. 33–46, VEB Gustav Fischer Verlag, Jena, and Elsevier/North-Holland, Amsterdam.Google Scholar
  40. Repke, K. R. H., and Dittrich, F. (1979). In Na, K-ATPase: Structure and Kinetics (J. C. Skou and J. G. Norby, eds.), pp. 487–500, Academic Press, New York.Google Scholar
  41. Repke, K. R. H., and Schön, R. (1973). Acta Biol. Med. Ger. 31, K19 - K30.Google Scholar
  42. Repke, K. R. H., and Schön, R. (1974). Acta Biol. Med. Ger. 33, K27 - K38.Google Scholar
  43. Repke, K. R. H., Schön, R., Henke, W., Schönfeld, W., Streckenbach, B., and Dittrich, F. (1974). Ann. N.Y. Acad. Sci. 242, 203–219.CrossRefGoogle Scholar
  44. Repke, K. R. H., Schön, R., and Dittrich, F. (1975). In Proceedings of IXth FEBS Meeting (G. Gârrdos and J. Szasz, eds.), Vol. 35, pp. 241–253, Akadémiai Kiadó, Budapest.Google Scholar
  45. Saks, V. A., Lipina, N. V., Sharov, V. G., Smirnov, V. N., Chazov, E., and Grosse, R. (1977). Biochim. Biophys. Acta 465, 550–558.CrossRefGoogle Scholar
  46. Schatzmann, H. J., and Burgin, H. (1978). Ann. N.Y. Acad. Sci. 307, 125–147.CrossRefGoogle Scholar
  47. Schön, R., Dittrich, F., and Repke, K. R. H. (1974). Acta Biol. Med. Germ. 33, K9 - K16.Google Scholar
  48. Schönfeld, W., and Streckenbach, B. (1977). Ergeb. Exp. Med. 24, 201–205.Google Scholar
  49. Shaffer, E., Azari, J., and Dahms, A. S. (1978). J. Biol. Chem. 253, 5696–5706.Google Scholar
  50. Spitzer, E., and Grosse, R. (1980). J. Mol. Cell. Cardiol. 12, 158.Google Scholar
  51. Streckenbach, B., Schwarz, D., and Repke, K. R. H. (1980). Biochim. Biophys. Acta 601, 34–46.CrossRefGoogle Scholar
  52. Stucki, J. W. (1980). Eur. J. Biochem. 109, 257–267.CrossRefGoogle Scholar
  53. Verjovski-Almeida, S., and Inesi, G. (1979). J. Biol. Chem. 254, 18–21.Google Scholar
  54. Welch, G. R. (1977). Prog. Biophys. Mol. Biol. 32, 193–191.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Kurt R. H. Repke
    • 1
  • Richard Grosse
    • 1
  1. 1.Biomembrane Section, Central Institute of Molecular BiologyAcademy of Sciences of the German Democratic RepublicBerlin-BuchG.D.R.

Personalised recommendations