Nuclear Magnetic Resonance Studies of the Adsorption of Divalent Cations to Phospholipid Bilayer Membranes

  • Alan C. McLaughlin


Thermodynamic aspects of the adsorption of divalent cations to phospholipid bilayer membranes can be reasonably well described by the Gouy-Chapman-Stern theory (S. McLaughlin, this volume). To proceed beyond this thermodynamic description requires molecular information about the structure of the divalent cation-phospholipid complexes. Because most experimental techniques, i.e., equilibrium dialysis (Portis et al., 1979) or ion-sensitive electrodes (McLaughlin et al., 1981), measure only the loss of divalent cations from the aqueous medium, they give no information on the bound complexes. For example, they cannot be used to determine which groups in the phospholipid molecule provide ligands for the divalent cation, or to distinguish between inner-sphere complexes, where the ligand is inserted into the first coordination sphere of the divalent cation, and outer-sphere complexes, where the ligand and the fully hydrated cation form an “ion pair” (Basolo and Pearson, 1967; Hewkin and Prince, 1970; Ahland, 1972; Beck, 1968). This review briefly discusses how nuclear magnetic resonance (NMR) can provide this type of molecular information and can also be used to quantitatively test one of the major assumptions of the Gouy-Chapman-Stern theory.


Nuclear Magnetic Resonance Divalent Cation Nuclear Magnetic Resonance Signal Alkaline Earth Cation Phospholipid Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahland, S. (1972). Coord. Chem. Rev. 8, 21–29.CrossRefGoogle Scholar
  2. Basolo, F., and Pearson, R. G. (1967). Mechanisms of Inorganic Reactions, pp. 34–38, Wiley, New York.Google Scholar
  3. Batchelor, J. G., Prestegard, J. H., Cushley, R. J., and Lipsky, S. R. (1972). Biochem. Biophys. Res. Commun. 48, 70–75.CrossRefGoogle Scholar
  4. Beck, M. T. (1968). Coord. Chem. Rev. 3, 91–115.CrossRefGoogle Scholar
  5. Berden, J. A., Cullis, P. R., Hoult, D. I., McLaughlin, A. C., Radda, G. K., and Richards, R. E. (1974). FEBS Lett. 46, 55–58.CrossRefGoogle Scholar
  6. Brintzinger, J. (1963). Biochim. Biophys. Acta 77, 343–345.CrossRefGoogle Scholar
  7. Cullis, P. R., and de Kruijff, B. (1976). Biochim. Biophys. Acta 436, 523–540.CrossRefGoogle Scholar
  8. Eigen, M., and Tamm, K. (1962). Z. Elektrochem. 66, 107–121.Google Scholar
  9. Grahame, D. C. (1958). Z. Elektrochem. 62, 264–274.Google Scholar
  10. Grasdalen, H., Eriksson, L. E. G., Westman, J., and Ehrenberg, A. (1977). Biochim. Biophys. Acta 469, 151–162.CrossRefGoogle Scholar
  11. Hewkin, D. J., and Prince, R. H. (1970). Coord. Chem. Rev, 5, 45–73.CrossRefGoogle Scholar
  12. Hope, M. J., and Cullis, P. R. (1980). Biochem. Biophys. Res. Commun. 92, 846–852.CrossRefGoogle Scholar
  13. Hutton, W. C., Yeagle, P. L., and Martin, R. B. (1977). Chem. Phys. Lipids 19, 255–265.CrossRefGoogle Scholar
  14. Lau, A., McLaughlin, A. C., and McLaughlin, S. G. A. (1981). Biochim. Biophys. Acta 645, 279–292.CrossRefGoogle Scholar
  15. Levine, S. (1971). J. Colloid Interface Sci. 37, 619–634.CrossRefGoogle Scholar
  16. Lis, L. J., Lis, W. T., Parsegian, V. A., and Rand, R. P. (1981). Biochemistry 20, 1771–1777.CrossRefGoogle Scholar
  17. McLaughlin, A. C., Podo, F., and Blasie, J. K. (1973). Biochem. Biophys. Acta 330, 109–121.CrossRefGoogle Scholar
  18. McLaughlin, A. C., Cullis, P. R., Berden, J. A., and Richards, R. E. (1975). J. Magn. Reson. 20, 146–165.Google Scholar
  19. McLaughlin, A. C., Grathwohl, C., and McLaughlin, S. (1978a). Biochim. Biophys. Acta 513, 338–357.CrossRefGoogle Scholar
  20. McLaughlin, A. C., Grathwohl, C., and Richards, R. E. (1978b). J. Magn. Reson. 31, 283–293.Google Scholar
  21. McLaughlin, S., Mulrine, N., Gresalfi, T., Vaio, F., and McLaughlin, A. C. (1981), J. Gen. Physiol., in press.Google Scholar
  22. Metcalfe, J. C., Birdsall, N. J. M., Feeney, J., Lee, A. G., Levine, Y. K., and Partington, P. (1971). Nature (London) 233, 199–201.CrossRefGoogle Scholar
  23. Michaelson, D. M., Horwitz, A. F., and Klein, M. P. (1973). Biochemistry 12, 2637–2645.CrossRefGoogle Scholar
  24. Nelson, A. P., and McQuarrie, D. A. (1975). J. Theor. Biol. 55, 13–27.CrossRefGoogle Scholar
  25. Pangborn, W. A. (1980). Fed. Proc. 39, 2191.Google Scholar
  26. Phillips, R. (1966). Chem. Rev. 66, 501–527.CrossRefGoogle Scholar
  27. Sauve, R., and Ohki, S. (1979). J. Theor. Biol. 81, 157–179.CrossRefGoogle Scholar
  28. Seelig, J. (1978). Biochim. Biophys. Acta 436, 523–540.Google Scholar
  29. Smithson, J. M., and Williams, R. J. P. (1958). J. Chem. Soc. 1958, 457–462.CrossRefGoogle Scholar
  30. Tsien, R. Y. (1978). Biophys. J. 24, 561–567.CrossRefGoogle Scholar
  31. Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D. (1979). Biochemistry 18, 780–790.Google Scholar
  32. Pushkin, J. S. (1977). J. Membr. Biol. 35, 39–55.Google Scholar
  33. Shulman, R. G., Sternlicht, H., and Wyluda, B. J. (1965). J. Chem. Phys. 43, 3116–3122.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Alan C. McLaughlin
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations