Advertisement

Biosynthesis of the Yeast Mitochondrial ATPase Complex

Contribution of the Mitochondrial Protein-Synthesizing System
  • Sangkot Marzuki
  • Henry Roberts
  • Anthony W. Linnane

Abstract

Elucidation of the mechanism of assembly of multimeric enzyme complexes of the mitochondrial inner membrane is a major challenge in biochemistry. One of the most intensively studied of these enzyme complexes is the mitochondrial H+-translocating ATPase. The ATPase complex is a mosaic consisting of mitochondrially made protein subunits and subunits imported from the extra mitochondrial cytoplasm. The formation of this enzyme complex, therefore, is a complicated process involving the assembly of the mitochondrially synthesized subunits as well as the synthesis of the other subunits on the cytoplasmic ribosomes, transport of these subunits to and across the mitochondrial membranes, and their subsequent assembly into a functional H+-ATPase.

Keywords

Enzyme Complex Apparent Molecular Weight Cytochrome Oxidase Subunit Proton Channel Mitochondrial ATPase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Choo, K. B., Nagley, P., Lukins, H. B., and Linnane, A. W. (1977). Mol. Gen. Genet. 153, 279–288.CrossRefGoogle Scholar
  2. Criddle, R. S., Edwards, T., Partis, M., and Griffiths, D. E. (1977). FEBS Leu. 84, 278–282.CrossRefGoogle Scholar
  3. Criddle, R. S., Johnston, R. F., and Stack, R. J. (1979). Curr. Top. Bioenerg. 9, 89–145.Google Scholar
  4. Fillingame, R. H. (1980). Annu. Rev. Biochem. 49, 1079–1113.CrossRefGoogle Scholar
  5. Foury, F., and Tzagoloff, A. (1976). Eur. J. Biochem. 68, 113–119.CrossRefGoogle Scholar
  6. Groot Obbink, D. J., Hall, R. M., Linnane, A. W., Lukins, H. B., Monk, B. C., Spithill, T. W., and Trembath, M. K. (1976). In The Genetic Function of Mitochondrial DNA (C. Saccone and A. M. Kroon, eds.), pp. 163–173, North-Holland, Amsterdam.Google Scholar
  7. Hensgens, L. A. M., Grivell, L. A., Borst, P., and Bos, J. L. (1979). Proc. Natl. Acad. Sci. USA 76, 1663–1667.CrossRefGoogle Scholar
  8. Lancashire, W. E., and Griffiths, D. E. (1975). Eur. J. Biochem. 51, 403–413.CrossRefGoogle Scholar
  9. Li, M., and Tzagoloff, A. (1979). Cell 18, 47–53.CrossRefGoogle Scholar
  10. Linnane, A. W., and Nagley, P. (1978). Arch. Biochem. Biophys. 187, 277–289.CrossRefGoogle Scholar
  11. Linnane, A. W., Astin, A. M., Beilharz, M. W., Bingham, C. G., Choo, W. M., Cobon, G. S., Marzuki, S., Nagley, P., and Roberts, H. (1980a). In The Organization and Expression of the Mitochondrial Genome (A. M. Kroon and C. Saccone, eds.), pp. 253–263, Elsevier/North-Holland, Amsterdam.Google Scholar
  12. Linnane, A. W., Marzuki, S., Nagley, P., Roberts, H., Beilharz, M. W., Choo, W. M., Cobon, G. S., Murphy, M., and Orian, J. M. (1980b). In The Plant Genome (D. R. Davies and D. A. Hopwood, eds.), pp. 99–110, The John Innes Charity, Norwich.Google Scholar
  13. Locker, J., Lewin, A., and Rabinowitz, M. (1979). Plasmid 2, 155–181.Google Scholar
  14. Macino, G., and Tzagoloff, A. (1979). J. Biol. Chem. 254, 4617–4623.Google Scholar
  15. Macino, G., and Tzagoloff, A. (1980). Cell 20, 507–517.CrossRefGoogle Scholar
  16. Morimoto, R., and Rabinowitz, M. (1979). Mol. Gen. Genet. 170, 11–23.Google Scholar
  17. Morimoto, R., Merten, S., Lewin, A., Martin, N. C., and Rabinowitz, M. (1978). Mol. Gen. Genet. 163, 241–255.CrossRefGoogle Scholar
  18. Murphy, M., Gutowski, S. J., Marzuki, S., Lukins, H. B., and Linnane, A. W. (1978). Biochem. Biophys. Res. Commun. 85, 1283–1290.CrossRefGoogle Scholar
  19. Murphy, M., Roberts, H., Choo, W. M., Macreadie, I., Marzuki, S., Lukins, H. B., and Linnane, A. W. (1980). Biochim. Biophys. Acta 592, 431–444.Google Scholar
  20. Nagley, P., Sriprakash, K. S., and Linnane, A. W. (1977). Adv. Microbiol. Physiol. 16, 157–277.CrossRefGoogle Scholar
  21. Orian, J. M., and Marzuki, S. (1981). J. Bacteriol., 146, 813–815.Google Scholar
  22. Orian, J. M., Murphy, M., and Marzuki, S. (1981). Biochim. Biophys. Acta 652, 234–239.Google Scholar
  23. Partis, M. D., Bertoli, E., Zanders, E. D., and Griffiths, D. E. (1979). FEBS Lett. 105, 167–170.CrossRefGoogle Scholar
  24. Roberts, H., Choo, W. M., Murphy, M., Marzuki, S., Lukins, H. B., and Linnane, A. W. (1979). FEBS Lett. 108, 501–504.CrossRefGoogle Scholar
  25. Ryrie, I. J., and Gallagher, A. (1979). Biochim. Biophys. Acta 545, 1–14.CrossRefGoogle Scholar
  26. Sebald, W., Hoppe, J., and Wachter, E. (1979). In Function and Molecular Aspects of Biomembrane Transport (E. Quagliariello, E. Palmieri, S. Papa, and M. Klingenberg, eds.), pp. 63–74, Elsevier/North-Holland, Amsterdam.Google Scholar
  27. Stephenson, G., Marzuki, S., and Linnane, A. W. (1980). Biochim. Biophys. Acta 609, 329–341.Google Scholar
  28. Thalenfeld, B. E., and Tzagoloff, A. (1980). J. Biol. Chem. 255, 6137–6180.Google Scholar
  29. Todd, R. D., Griesenbeck, T. A., and Douglas, M. G. (1980). J. Biol. Chem. 255, 5461–5467.Google Scholar
  30. Trembath, M. K., Molloy, P. L., Sriprakash, K. S., Cutting, G. J., Linnane, A. W., and Lukins, H. B. (1976). Mol. Gen. Genet. 145, 43–52.CrossRefGoogle Scholar
  31. Tzagoloff, A., and Meagher, P. (1972). J. Biol. Chem. 247, 594–603.Google Scholar
  32. Tzagoloff, A., Macino, G., and Sebald, W. (1979). Annu. Rev. Biochem. 48, 419–441.CrossRefGoogle Scholar
  33. Wachter, E., Sebald, W., and Tzagoloff, A. (1977). In Mitochondria 1977: Genetics and Biogenesis of Mitochondria (W. Bandlow, R. J. Schweyen, K. Wolf, and F. Kaudewitz, eds.), pp. 441–449, de Gruyter, Berlin.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Sangkot Marzuki
    • 1
  • Henry Roberts
    • 1
  • Anthony W. Linnane
    • 1
  1. 1.Department of BiochemistryMonash UniversityClaytonAustralia

Personalised recommendations