Charge-Transport Characteristics of a Plasma Membrane Proton Pump

  • Clifford L. Slayman


In the mycelial fungus, Neurospora,the plasma membrane—like that of most other non-animal cells—is organized in a “chemiosmotic” fashion (Slayman, 1974; Eddy, 1978). This means that the major expenditure of metabolic energy at the membrane occurs via a proton efflux pump, which creates a standing difference of eletrochemical potential for protons (\(\vartriangle {{\tilde{\mu }}_{{{H}^{+}}}}\)). And it is this \(\vartriangle {{\tilde{\mu }}_{{{H}^{+}}}}\) that supplies energy for most other transport processes. A similar arrangement is found in animal cells, but there the major transport energy is used to create a \(\vartriangle {{\tilde{\mu }}_{N{{a}^{+}}}}\), which in turn drives other processes. (The structure and chemical properties of the membrane ATPase, which underlies H+ pumping in Neurospora,are described in Chapter 61.)


Proton Pump Sodium Butyrate Osmotic Shock Pump Current Potassium Cyanide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Britton, H. G. (1966). Arch. Biochem. Biophys. 117, 167–183.CrossRefGoogle Scholar
  2. Eddy, A. A. (1978). Curr. Top. Membr. Transp. 10, 279–360.CrossRefGoogle Scholar
  3. Gradmann, D., Hansen, U.-P., Long, W. S., Slayman, C. L., and Warncke, J. (1978). J. Membr. Biol. 39, 333–367.CrossRefGoogle Scholar
  4. Gradmann, D., Hansen, U.-P, and Slayman, C. L. (1982). In Electrogenic Ion Pumps(C. L. Slayman, ed.), Academic Press, New York.Google Scholar
  5. Hansen, U.-P., Gradmann, D., Sanders, D., and Slayman, C. L. (1981). J. Membr. Biol., 63, 165–190.CrossRefGoogle Scholar
  6. Kuroda, H., Warncke, J., Sanders, D., Hansen, U.-P., Allen, K. E., and Bowman, B. J. (1980). In Plant Membrane Transport: Current Conceptual Issues(R. M. Spanswick, W. J. Lucas, and J. Dainty, eds.), pp. 507–508, Elsevier, Amsterdam.Google Scholar
  7. Läuger, P., and Stark, G. (1970). Biochim. Biophys. Acta 211, 458–466.CrossRefGoogle Scholar
  8. Morowitz, H. J. (1978). Am. J. Physiol. 235, R99–R114.Google Scholar
  9. Sanders, D., Hansen, U.-P., and Slayman, C. L. (1981). Proc. Natl. Acad. Sci. USA 78, 5903–5907.CrossRefGoogle Scholar
  10. Slayman, C. L. (1974). In Membrane Transport in Plants(U. Zimmermann and J. Dainty, eds.), pp. 107–119, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  11. Slayman, C. L. (1980). In Plant Membrane Transport: Current Conceptual Issues(R. M. Spanswick, W. J. Lucas, and J. Dainty, eds.), pp. 179–190, Elsevier, Amsterdam.Google Scholar
  12. Slayman, C. L., Long, W. S., and Lu, C. Y.-H. (1973). J. Membr. Biol. 14, 305–338.CrossRefGoogle Scholar
  13. Warncke, J., and Slayman, C. L. (1980). Biochim. Biophys. Acta 591, 224–233.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Clifford L. Slayman
    • 1
  1. 1.Department of PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations