Skip to main content

Biochemical Characterization of the Fungal Plasma Membrane ATPase, An Electrogenic Proton Pump

  • Chapter
Book cover Membranes and Transport
  • 126 Accesses

Abstract

From a variety of flux and electrophysiological studies, it has become clear that there is a rapid and physiologically important circulation of protons across the fungal plasma membrane (Eddy, 1978; Goffeau and Slayman, 1981). Protons are pumped outwards by a primary ATPase, generating both a pH gradient (up to 3 pH units) and a membrane potential (150 to 250 mV, inside negative), and return inwards by way of H+-dependent cotransport systems for sugars, amino acids, and inorganic ions (Fig. 1). A major goal of research during the past few years has been to establish the molecular structure of the fungal plasma membrane ATPase. In particular, there has been reason to ask whether it belongs to the F0F1 class of mitochondrial, chloroplast, and bacterial ATPases (which are capable of ATP-driven proton translocation, even though they usually function in the opposite direction to synthesize ATP), or whether it is more closely related to the Na+/K+-ATPase, Ca2+-ATPase and H+/K+-ATPase of animal cells (which act physiologically in the “transport” direction to pump cations across their respective membranes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlers, J., Ahr, E., and Seyforth, A. (1978). Mol. Cell. Biochem. 22, 39–49.

    Article  CAS  Google Scholar 

  • Amory, A., Foury, F., and Goffeau, A. (1980). J. Biol. Chem. 255, 9353–9357.

    CAS  Google Scholar 

  • Blasco, F., Chapuis, J. P., and Giordani, R. (1981). Biochimie 63, 507–514.

    Article  CAS  Google Scholar 

  • Borst-Pauwels, G. W. F. H., and Peeters, P. H. J. (1981). Biochim. Biophys. Acta, 642, 173–186.

    Article  CAS  Google Scholar 

  • Bowman, B. J., and Slayman, C. W. (1977). J. Biol. Chem. 252, 3357–3363.

    CAS  Google Scholar 

  • Bowman, B. J., and Slayman, C. W. (1979). J. Biol. Chem. 254, 2928–2934.

    CAS  Google Scholar 

  • Bowman, B. J., Blasco, F., and Slayman, C. W. (1978a). In Frontiers of Biological Energetics (P. L. Dutton

    Google Scholar 

  • J. S. Leigh, and A. Scarpa, eds.), Vol. 1, pp. 525–533, Academic Press, New York.

    Google Scholar 

  • Bowman, B. J., Mainzer, S. E., Allen, K. E., and Slayman, C. W. (1978b). Biochim. Biophys. Acta 512, 13–28.

    Article  CAS  Google Scholar 

  • Bowman, B. J., Blasco, F., and Slayman, C. W. (1981a), J. Biol. Chem., 256, 12343–12349.

    CAS  Google Scholar 

  • Bowman, E. J., Bowman, B. J., and Slayman, C. W. (1981b). J. Biol. Chem., 256, 12336–12342.

    CAS  Google Scholar 

  • Dame, J. B., and Scarborough, G. A. (1980). Biochemistry 19, 2931–2937.

    Article  CAS  Google Scholar 

  • Delhez, J. Dufour, J.-P., Thines, D., and Goffeau, A. (1977). Eur. J. Biochem. 79 319–328.

    Google Scholar 

  • Dufour, J.-P., and Goffeau, A. (1978). J. Biol. Chem. 253, 7026–7032.

    CAS  Google Scholar 

  • Dufour, J.-P, and Goffeau, A. L. (1980). Eur. J. Biochem. 105, 145–154.

    Article  CAS  Google Scholar 

  • Dufour, J.-P, and Goffeau, A. L. (1981). J. Biol. Chem., 255, 10591–10598.

    Google Scholar 

  • Dufour, J.-P., and Tsong, T. Y. (1981). J. Biol. Chem., 256, 1801–1808.

    CAS  Google Scholar 

  • Eddy, A. A. (1978). Curr. Top. Membr. Transp. 10, 279–360.

    Article  CAS  Google Scholar 

  • Fuhrman, G. F., Boehm, C., and Theuvenet, A. P. R. (1976). Biochim. Biophys. Acta 433, 583–596.

    Article  Google Scholar 

  • Goffeau, A. L., and Slayman, C. W. (1981). Biochim. Biophys. Acta,in press. Malpartida, F., and Serrano, R. (1980). FEBS Lett. 111 69–72.

    Google Scholar 

  • Peeters, P. H. J., and Borst-Pauwels, G. W. F. H. (1979). Physiol. Plant. 46, 330–337. Perlin, D. S., and Slayman, C. W. (1981). Fed. Proc. 40, 1784.

    Google Scholar 

  • Scarborough, G. A. (1975). J. Biol. Chem. 250, 1106–1111.

    CAS  Google Scholar 

  • Scarborough, G. A. (1976). Proc. Natl. Acad. Sci. USA 73, 1485–1488. Scarborough, G. A. (1977). Arch. Biochem. Biophys. 180, 384–393. Scarborough, G. A. (1980). Biochemistry 19, 2925–2931.

    Google Scholar 

  • Serrano, R. (1978). Mol. Cell. Biochem. 22, 51–62.

    Article  CAS  Google Scholar 

  • Stroobant, P., and Scarborough, G. A. (1979). Anal. Biochem. 95, 554–558.

    Article  CAS  Google Scholar 

  • Willsky, G. R. (1979). J. Biol. Chem. 254, 3326–3332.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Slayman, C.W. (1982). Biochemical Characterization of the Fungal Plasma Membrane ATPase, An Electrogenic Proton Pump. In: Martonosi, A.N. (eds) Membranes and Transport. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4082-9_61

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4082-9_61

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4084-3

  • Online ISBN: 978-1-4684-4082-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics