Divalent Cations, Electrostatic Potentials, Bilayer Membranes

  • Stuart McLaughlin


“How many? How tightly? Where? Why?” these were the questions posed by Scatchard (1949) in his elegant study of the adsorption of ions to proteins. These succinct questions also define what we wish to know about the adsorption of divalent cations to phospholipid bilayer membranes. The first two questions, which relate to the stoichiometry of the binding and the magnitude of the binding constants, will be addressed in this chapter. The third question, which relates to the exact location of the bound divalent cations in the phospholipid head group, requires a molecular approach such as nuclear magnetic resonance (NMR) and will be addressed in the following chapter. The fourth question, which relates to the physiological relevance of the adsorption of divalent cations to the bilayer component of biological membranes, cannot yet be completely answered. We shall, however, consider two phenomena: (1) the effect of divalent cations on the electrostatic potential at the surface of a nerve membrane and (2) the effect of the adsorption of calcium to intracellular membranes on the diffusion coefficient of this ion.


Nuclear Magnetic Resonance Electron Spin Resonance Divalent Cation Electrostatic Potential Bilayer Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aveyard, R., and Haydon, D. A. (1973). An Introduction to the Principles of Surface Chemistry, Cambridge University Press, London.Google Scholar
  2. Barlow, C. A., Jr. (1970). In Physical Chemistry, An Advanced Treatise, pp. 167–246, Academic Press, New York.Google Scholar
  3. Brockris, J. O’M., and Reddy, A. K. N. (1970). Modern Electrochemistry, Plenum Press, New York. Castle, J. D., and Hubbell, W. L. (1976). Biochemistry 15, 4818–4831.Google Scholar
  4. Chapman, D. L. (1913). Philos Mag. 25, 475–481.Google Scholar
  5. Cohen, F. S., Zimmerberg, J., and Findelstein, A. (1980). J. Gen. Physiol. 75, 251–270.CrossRefGoogle Scholar
  6. Edsall, J. T., and Wyman, J. (1958). Biophysical Chemistry, Academic Press, New York.Google Scholar
  7. Eisenberg, M., Gresalfi, T., Riccio, T., and McLaughlin, S. (1979). Biochemistry 18, 5213–5223.CrossRefGoogle Scholar
  8. Forsyth, P. A., Marcella, S., Mitchell, D. J., and Ninham, B. W. (1977). Biochim. Biophys. Acta 469, 335–344.CrossRefGoogle Scholar
  9. Gileadi, E. (1967). Electrosorption, Plenum Press, New York.CrossRefGoogle Scholar
  10. Gouy, M. (1910). J. Phys. (Paris) 19, 457–468.Google Scholar
  11. Grahame, D. C. (1947). Chem. Rev. 41, 441–501.CrossRefGoogle Scholar
  12. Grasdalen, H., Eriksson, L. E. G., Westman, J., and Ehrenberg, A. (1977). Biochim. Biophys. Acta 469, 151–162.CrossRefGoogle Scholar
  13. Haydon, D. A. (1964). Recent Prog. Surf. Sci. 1, 94–158.Google Scholar
  14. Hille, B., Woodhull, A. M., and Shapiro, B. I. (1975). Philos. Trans. R. Soc. London Ser. B 270, 301–318.CrossRefGoogle Scholar
  15. Jacobson, K., and Papahadjopoulos, D. (1975). Biochemistry 14, 152–161.CrossRefGoogle Scholar
  16. Lau, A., McLaughlin, A., and McLaughlin, S. (1981). Biochim. Biophys. Acta 645, 279–292.CrossRefGoogle Scholar
  17. McDonald, R. C., Simon, S. A., and Baer, E. (1976). Biochemistry 15, 885–891.CrossRefGoogle Scholar
  18. McLaughlin, A. C., Grathwohl, C., and McLaughlin, S. (1978). Biochim. Biophys. Acta 513, 338–357.CrossRefGoogle Scholar
  19. McLaughlin, S. (1977). Curr. Top. Membr. Transp. 9, 71–144.CrossRefGoogle Scholar
  20. McLaughlin, S., and Brown, J. (1981). J. Gen. Physiol. 77, 475–487.CrossRefGoogle Scholar
  21. McLaughlin, S., Mulrine, N., Gresalfi, T., Vaio, G., and McLaughlin, A. (1981). J. Gen. Physiol. 77, 445–473.CrossRefGoogle Scholar
  22. Mohilner, D. M. (1966). Electroanal. Chem. 1, 241–409.Google Scholar
  23. Newton, C., Pangborn, W., Nir, S., and Papahadjopoulos, D. (1978). Biochim. Biophys. Acta 506, 281–287.CrossRefGoogle Scholar
  24. Ohki, S., and Duzgunes, N. (1979). Biochim. Biophys. Acta 552, 438–449.CrossRefGoogle Scholar
  25. Ohki, S., and Sauve, R. (1978). Biochim. Biophys. Acta 511, 377–387.CrossRefGoogle Scholar
  26. Papahadjopoulos, D., Vail, W. J., Newton, C., Nir, S., Jacobson, K., Poste, G., and Lazo, R. (1977). Biochim. Biophys. Acta 465, 579–598.CrossRefGoogle Scholar
  27. Portis, A., Newton, C., Pangborn, W., and Papahadjopoulos, D. (1979). Biochemistry 18, 780–790.CrossRefGoogle Scholar
  28. Puskin, J. S. (1977). J. Membr. Biol. 35, 39–55.CrossRefGoogle Scholar
  29. Puskin, J., and Coene, M. T. (1980). J. Membr. Biol. 52, 69–74.CrossRefGoogle Scholar
  30. Rice, S. A., and Nagasawa, M. (1961). Polyelectrolyte Solutions, Academic Press, New York.Google Scholar
  31. Scatchard, G. (1949). Ann. N.Y. Acad. Sci. 51, 660–672.CrossRefGoogle Scholar
  32. Schoch, P., Sargent, D. F., and Schwyzer, R. (1979). J. Membr. Biol. 46, 71–89.CrossRefGoogle Scholar
  33. Sparnaay, M. J. (1972). The Electrical Double Layer, Pergamon Press, Oxford.Google Scholar
  34. Stern, O. (1924). Z. Electrochem. Angew. Phys. Chem. 30, 508–516.Google Scholar
  35. Träuble, H., and Eibl, H. (1974). Proc. Natl. Acad. Sci. USA 71, 214–219.CrossRefGoogle Scholar
  36. van Dijck, P. W. M., de Kruijff, B., Verkleij, A. J., van Deenen, L. L. M., and de Gier, J. (1978). Biochim. Biophys. Acta 512, 84–96.CrossRefGoogle Scholar
  37. Verwey, E. J. W., and Overbeek, J. Th. G. (1948). Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Stuart McLaughlin
    • 1
  1. 1.Department of Physiology and Biophysics, Health Sciences CenterState University of New YorkStony BrookUSA

Personalised recommendations