The N,N′-Dicyclohexylcarbodiimide-Sensitive ATPase in Streptococcus faecalis Membranes

  • Adolph Abrams
  • Richard M. Leimgruber


Much has been learned in recent years about the structure of the proton-translocating ATPases (H+-ATPase) in mitochondria, chloroplasts, and bacteria, although the molecular basis for its action remains obscure. This membrane-associated enzyme may contain up to 20 polypeptide chains of 7 to 10 kinds and is one of the most complicated multisubunit complexes in nature. Hopefully some useful insights may emerge by comparing various structural features of the enzyme obtained from widely different sources. Although H+-ATPases are reversible, there could be some fundamental differences, particularly at the level of the subunit structure, between an H+-ATPase that functions physiologically mainly as an ATP synthetase, as in mitochondria, chloroP lasts, and aerobic bacteria, and the H+-ATPase that operates only in the hydrolytic direction, as in Streptococcus faecalis. With comparative aspects in mind, we will survey in this review the current status of the subunit structure of the N,N′-dicyclohexylcarbodiimide (DCCD)-sensitive ATPase in S. faecalis. As far as we are aware, S. faecalis is the only strictly fermentative organism whose H+-ATPase has been studied in considerable detail. This organism is a homolactic fermenter and lacks a respiratory chain. Consequently, ATP generated glycolytically is the sole energy source and the H+-ATPase is used solely for the purpose of coupling ATP hydrolysis to solute transport (Harold et al., 1969; Abrams et al., 1972; Harold and Spitz, 1975). The ATPase is firmly associated with the plasma membrane ghosts that are formed when protoplasts are subjected to osmotic or metabolic lysis (Abrams, 1965). However, washing the membranes with low-ionic-strength buffers causes release of the ATPase in a water-soluble form provided that multivalent cations are absent (Abrams, 1965). Complete reattachment of the soluble ATPase to depleted membranes can occur when Mg2+ ions are added (Abrams and Baron, 1968). These effects of ionic strength and Mg2+ suggest that both electrostatic interactions and hydrophobic forces are involved in maintaining the stability of the ATPase-membrane complex (Abrams and Smith, 1974). Notably, a similar low-salt wash procedure is effective for solubilizing the ATPase in a variety of bacterial membranes (Abrams and Smith, 1974; Downie et al., 1979), but for some unknown reason it seems to be ineffective for the eukaryotic H+-ATPase.


Subunit Structure Membrane Sector Sensitive ATPase Diazo Benzene DCCD Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, A. (1965). J. Biol. Chem. 240, 3675–3681.Google Scholar
  2. Abrams, A. (1976). In The Enzymes of Biological Membranes (A. Martonosi, ed.), Vol. 3, pp. 57–73, Plenum Press, New York.Google Scholar
  3. Abrams, A., and Baron, C. (1968). Biochemistry 7, 501–506.CrossRefGoogle Scholar
  4. Abrams, A., and Smith, J. B. (1974). In The Enzymes (P. D. Boyer, ed.), Vol. X, 3rd ed., pp. 395–429, Academic Press, New York.Google Scholar
  5. Abrams, A., Smith, J. B., and Baron, C. (1972). J. Biol. Chem. 247, 1484–1488.Google Scholar
  6. Abrams, A., Nolan, E. A., Jensen, C., and Smith, J. B. (1973). Biochem. Biophys. Res. Commun. 55, 22–29.CrossRefGoogle Scholar
  7. Abrams, A., Baron, C., and Schnebli, H. (1974). In Methods in Enzymology (S. Fleischer and L. Packer, eds.), Vol. 32, Part B, pp. 428–439, Academic Press, New York.Google Scholar
  8. Abrams, A., Jensen, C., and Morris, D. (1976a). Biochem. Biophys. Res. Commun. 69, 804–811.CrossRefGoogle Scholar
  9. Abrams, A., Morris, D., and Jensen, C. (1976b). Biochemistry 15, 5560–5566.CrossRefGoogle Scholar
  10. Babakov, A. V., and Vasilov, R. G. (1979). Bio-Organic Chem. 5, 119–125.Google Scholar
  11. Baron, D., and Abrams, A. (1971). J. Biol. Chem. 246, 1542–1544.Google Scholar
  12. Beechey, R. B., Roberton, A. M., Holloway, C. T., and Knight, I. G. (1967). Biochemistry 6, 3867–3879.CrossRefGoogle Scholar
  13. Bragg, P. D., and Hou, C. (1980). Eur. J. Biochem. 106, 495–503.CrossRefGoogle Scholar
  14. Catterall, W. A., Coty, A., and Pedersen, P. D. (1973). J. Biol. Chem. 248, 7427–7431.Google Scholar
  15. Cohen, N. S., Lee, S. H., and Brodie, A. F. (1978). J. Supramol. Struct. 8, 111–117.CrossRefGoogle Scholar
  16. Downie, J. A., Gibson, F., and Cox, G. B. (1979). Annu. Rev. Biochem. 48, 103–131.CrossRefGoogle Scholar
  17. Dunn, S. D., Heppel, L. A., and Fullmer, C. S. (1980). J. Biol. Chem. 255, 6891–6896.Google Scholar
  18. Foster, D. L., and Fillingame, R. H. (1979). J. Biol. Chem. 254, 8230–8236.Google Scholar
  19. Friedl, P., Friedl, C., and Schairer, H. U. (1979). Eur. J. Biochem. 100, 175–180.CrossRefGoogle Scholar
  20. Hare, J. F. (1975). Biochem. Biophys. Res. Commun. 66, 1329–1337.CrossRefGoogle Scholar
  21. Harold, F. M., and Spitz, E. (1975). J. Bacteriol. 122, 266–277.Google Scholar
  22. Harold, F. M., Baarda, J. R., Baron, C., and Abrams, A. (1969). J. Biol. Chem. 244, 2261–2268.Google Scholar
  23. Hoppe, J. Schairer, H. U., and Sebald W. (1980). FEBS Lett. 109, 107–111.CrossRefGoogle Scholar
  24. Leimgruber, R. M., Jensen, C., and Abrams, A. (1981). J. Bacteriol. 147, 363–372.Google Scholar
  25. Leimgruber, R. M., Jensen, C., and Abrams, A. (1978). Biochem. Biophys. Res. Commun. 81, 439–447.CrossRefGoogle Scholar
  26. Ludwig, B., Prochaska, L., and Capaldi, R. A. (1980). Biochemistry 19, 1516–1523.CrossRefGoogle Scholar
  27. Maeda, M., Kobayashi, H., Futai, M., and Anraku, Y. (1977). J. Biochem. 82, 311–314.Google Scholar
  28. Ritz-Gold, C. J., Gold, C. M., and Brodie, A. F. (1979). Biochim. Biophys. Acta 547, 1–17. Schnebli, H., Vatter, A. E., and Abrams, A. (1970). J. Biol. Chem. 245, 1122–1127.Google Scholar
  29. Sebald, W., Graf, T., and Luckins, H. B. (1979). Eur. J. Biochem. 93, 587–599.CrossRefGoogle Scholar
  30. Sebald, W., Machleidt, W., and Wachter, E. (1980). Proc. Natl. Acad. Sci. USA 77, 785–789.CrossRefGoogle Scholar
  31. Senior, A. E. (1979a). In Membrane Proteins in Energy Transduction (R. A. Capaldi, ed.), pp. 233–278, Dekker, New York.Google Scholar
  32. Senior, A. E. (1979b). J. Biol. Chem. 254, 11319–11323.Google Scholar
  33. Simoni, P. D., and Postma, P. W. (1975). Annu. Rev. Biochem. 44, 523–554.CrossRefGoogle Scholar
  34. Sone, N., Yoshida, M., Hirata, H., and Kagawa, Y. (1975). J. Biol. Chem. 250, 7917–7923.Google Scholar
  35. Todd, R. D., Griesenbeck, T. A., and Douglas, M. G. (1980). J. Biol. Chem. 255, 5461–5467.Google Scholar
  36. Yoshida, M., Sone, N., Hirata, H., Kagawa, Y., and Ui, Y. (1979). J. Biol. Chem. 254, 9525–9533.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Adolph Abrams
    • 1
  • Richard M. Leimgruber
    • 1
  1. 1.Department of Biochemistry/Biophysics/GeneticsUniversity of Colorado School of MedicineDenverUSA

Personalised recommendations