Advertisement

The Genetics of Electron Transport in Escherichia coli

  • Bruce A. Haddock

Abstract

The gram-negative bacterium Escherichia coli is a facultative anaerobe that can derive energy for growth both fermentatively, via glycolysis, and oxidatively using either oxygen or, under anaerobic conditions, fumarate and nitrate as terminal electron acceptors. The ease with which mutants can be generated, analyzed, and manipulated genetically makes it hardly surprising that this organism has received considerable experimental attention over the last decade (for reviews see Gibson and Cox, 1973; Cox and Gibson, 1974; Haddock and Jones, 1977; Haddock, 1977).

Keywords

Nitrate Reductase Cytoplasmic Membrane Nitrate Reductase Activity NADH Dehydrogenase Terminal Electron Acceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M. W. W., and Hall, D. O. (1979). Biochem. J. 183, 11–22.Google Scholar
  2. Begg, Y. A., Whyte, J. N., and Haddock, B. A. (1977). FEMS Microbiol. Leu. 2, 47–50.CrossRefGoogle Scholar
  3. Bernard, T., and Gottschalk, G. (1978). Arch. Microbiol. 116, 235–238.CrossRefGoogle Scholar
  4. Boxer, D. H., and Clegg, R. A. (1975). FEBS Lett. 60, 54–57.CrossRefGoogle Scholar
  5. Cole, S. T., and Guest, J. R. (1979a). FEMS Microbiol. Lett. 5, 65–67.CrossRefGoogle Scholar
  6. Cole, S. T., and Guest, J. R. (1979b). Eur. J. Biochem. 102, 65–71.CrossRefGoogle Scholar
  7. Cole, S. T., and Guest, J. R. (1980). Mol. Gen. Genet. 178, 409–418.Google Scholar
  8. Cox, G. B., and Gibson, F. (1974). Biochim. Biophys. Acta 346, 1–25.Google Scholar
  9. Dancey, G. F., Levine, A. E., and Shapiro, B. M. (1976). J. Biol. Chem. 251, 5911–5920.Google Scholar
  10. DeMoss, J. A. (1978). J. Bacteriol. 133, 626–630.Google Scholar
  11. Downie, J. A., and Cox, G. B. (1979). J. Bacteriol. 133, 477–484.Google Scholar
  12. Enoch, H. G., and Lester, R. L. (1975). J. Biol. Chem. 250, 6693–6705.Google Scholar
  13. Fimmel, A. L., and Haddock, B. A. (1979). J. Bacteriol. 138, 726–730.Google Scholar
  14. Gibson, F., and Cox, G. B. (1973). Essays Biochem. 9, 1–29.Google Scholar
  15. Giordano, G., Haddock, B. A., and Boxer, D. H. (1980). FEMS Microbiol. Lett. 8, 229–235.CrossRefGoogle Scholar
  16. Glick, B. R., Wang, P. Y., Schneider, M., and Martin, W. G. (1980). Can. J. Biochem. 58, 361–367.Google Scholar
  17. Graham, A., (1980). Ph.D. thesis, University of Dundee.Google Scholar
  18. Graham, A., and Boxer, D. H. (1978). Biochem. Soc. Trans. 6, 1210–1211.Google Scholar
  19. Graham, A., and Boxer, D. H. (1980). FEBS Lett. 113, 15–20.CrossRefGoogle Scholar
  20. Graham, A., Boxer, D. H., Haddock, B. A., Mandrand-Berthelot, M. A., and Jones, R. W. (1980a). FEBS Lett. 113, 167–172.CrossRefGoogle Scholar
  21. Graham, A., Jenkins, H. E., Smith, N. H., Mandrand-Berthelot, M. A., Haddock, B. A., and Boxer, D. H. (1980b). FEMS Microbiol. Lett. 7, 145–151.CrossRefGoogle Scholar
  22. Gray, C. T., and Guest, J. R. (1965). Science 148, 186–192.CrossRefGoogle Scholar
  23. Haddock, B. A. (1977). Symp. Soc. Gen. Microbiol. 27, 95–120.Google Scholar
  24. Haddock, B. A., and Jones, C. W. (1977). Bacteriol. Rev. 41, 47–99.Google Scholar
  25. Haddock, B. A., Downie, J. A., and Garland, P. B. (1976). Biochem. J. 154, 285–294.Google Scholar
  26. Hanson, R. L., and Rose, C. (1979). J. Bacteriol. 138, 783–787. Hanson, R. L., and Rose, C. (1980). J. Bacteriol. 141, 401–404.Google Scholar
  27. Houghton, R. L., Fisher, R. J., and Sanadi, D. R. (1976). Biochem. Biophys. Res. Commun. 73, 751–757.CrossRefGoogle Scholar
  28. Jenkins, H. E., and Haddock, B. A. (1980). FEMS Microbiol. Lett., 9, 293–296.CrossRefGoogle Scholar
  29. Jenkins, H. E., Graham, A., and Haddock, B. A. (1979). FEMS Microbiol. Lett. 6, 169–173.CrossRefGoogle Scholar
  30. Jones, C. W. (1977). Symp. Soc. Gen. Microbiol. 27, 23–59. Jones, R. W. (1980a). Biochem. J. 188, 345–350.Google Scholar
  31. Jones, R. W. (1980b). FEMS Microbiol. Lett. 8, 167–171.CrossRefGoogle Scholar
  32. Jones, R. W., and Garland, P. B. (1977). Biochem. J. 164, 199–211.Google Scholar
  33. Jones, R. W., Lamont, A., and Garland, P. B. (1980). Biochem. J. 190, 79–94.Google Scholar
  34. Kita, K., Yamato, I., and Anraku, Y. (1978). J. Biol. Chem. 253, 8910–8915.Google Scholar
  35. Liang, A., and Houghton, R. L. (1980). FEBS Lett. 109, 185–188.CrossRefGoogle Scholar
  36. MacGregor, C. H. (1975). J. Bacteriol. 121, 1117–1121.Google Scholar
  37. MacGregor, C. H., and Christopher, A. R. (1978). Arch. Biochem. Biophys. 185, 204–213.CrossRefGoogle Scholar
  38. Mandrand-Berthelot, M. A., Wee, M. Y. K., and Haddock, B. A. (1978). FEMS Microbiol. Lett. 4, 37–40.CrossRefGoogle Scholar
  39. Orth, V., Chippaux, M., and Pascal, M. C. (1980). J. Gen. Microbiol. 177, 257–262.Google Scholar
  40. Owen, P., and Kaback, H. R. (1979a). Biochemistry 18, 1413–1421.CrossRefGoogle Scholar
  41. Owen, P., and Kaback, H. R. (1979b). Biochemistry 18, 1422–1426.CrossRefGoogle Scholar
  42. Poole, R. K., and Haddock, B. A. (1975). Biochem. J. 152, 537–546.Google Scholar
  43. Poole, R. K., Waring, A. J., and Chance, B. (1979). Biochem. J. 184, 379–389.Google Scholar
  44. Reid, G. A., and Ingledew, W. J. (1979). Biochem. J. 182, 465–472.Google Scholar
  45. Reid, G. A., and Ingledew, W. J. (1980). FEBS Lett. 109, 1–4.CrossRefGoogle Scholar
  46. Ruch, F. E., Kuritzkes, D. R., and Lin, E. C. C. (1979). Biochem. Biophys. Res. Commun. 91, 1365–1370.CrossRefGoogle Scholar
  47. Scott, R. H., and DeMoss, J. A. (1976). J. Bacteriol. 126, 478–486.Google Scholar
  48. Scott, R. H., Sperl, G. T., and DeMoss, J. A. (1979). J. Bacteriol. 137, 719–726.Google Scholar
  49. Spencer, M. E., and Guest, J. R. (1973). J. Bacteriol. 114, 563–570.Google Scholar
  50. Sperl, G. T., and DeMoss, J. A. (1975). J. Bacteriol. 122, 1230–1238.Google Scholar
  51. Yamamoto, I., and Ishimoto, M. (1978). J. Biochem. (Tokyo) 84, 673–679.Google Scholar
  52. Young, I. G., and Wallace, B. J. (1976). Biochim. Biophys. Acta 449, 376–385.CrossRefGoogle Scholar
  53. Young, I. G., Jaworowski, A., and Poulis, M. (1978). Gene 4, 25–36.CrossRefGoogle Scholar
  54. Zahl, K. J., Rose, C., and Hanson, R. L. (1978). Arch. Biochem. Biophys. 190, 598–602.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Bruce A. Haddock
    • 1
  1. 1.Biogen S.A.Carouge/GenevaSwitzerland

Personalised recommendations