Insights Gained by EPR Spectroscopy into the Composition and Function of the Mitochondrial Respiratory Chain

  • Helmut Beinert


Ever since Keilin’s fundamental discovery—or rediscovery—in the 1930s of the cytochromes (Keilin, 1966), which have been and still are considered by many to be the mainstays of the mitochondrial respiratory chain, optical spectroscopy has played a paramount role in this field of research. The past two or three decades have witnessed the introduction into biochemistry of additional and different forms of spectroscopy, using frequencies of the electromagnetic spectrum considerably higher or lower than traditional spectrophotometry, which of course often required radically different technologies. In its impact on our knowledge of what has been called the respiratory chain, one form of spectroscopy stands unequaled, viz. electron paramagnetic resonance (EPR) spectroscopy. This might have been expected, for EPR spectroscopy is the spectroscopic technique to directly look at unpaired electrons in organic molecules—e.g., cofactors such as flavin or ubiquinone (UQ)—and transition metal ions, which are electron carriers in oxidative enzymes. Fortunately, other virtues of the technique have joined this most important quality to make EPR spectroscopy the thus far most successful tool in advancing our knowledge far beyond the status as essentially set by Keilin’s pioneering work and by logical extensions thereof in the 1940s and 1950s. The virtues are as follows. (1) The sensitivity of EPR spectroscopy, when carried out at low temperatures, is sufficient to let us clearly recognize even in whole tissues practically all the electron carriers that have been identified by EPR in more concentrated, purified fractions. (2) While the sensitivity of EPR spectroscopy, in most instances, lies one or two orders of magnitude below that of spectrophotometry, its power of discrimination is far superior, particularly because effects of the intensity of the impinging radiation (saturation), observation temperature, and coupling of the observed paramagnet to other magnetic species can be exploited.


Electron Paramagnetic Resonance Respiratory Chain Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Signal NADH Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aasa, R., Albracht, S. P. J., Falk, K. E., Lanne, B., and Vänngârd, T. (1976). Biochim. Biophys. Acta 422, 260 - 272.Google Scholar
  2. Ackrell, B. A. C., Kearney, E. B., Coles, C. J., Singer, T. P., Beinert, H., Wan, Y.-P., and Folkers, K. (1977). Arch. Biochem. Biophys. 182, 108 - 117.CrossRefGoogle Scholar
  3. Albracht, S. P. J. (1980). Biochim. Biophys. Acta 612, 11 - 28.Google Scholar
  4. Bäckström, D., Norling, B., Ehrenberg, A., and Ernster, L. (1970). Biochim. Biophys. Acta 197, 108 - 111.CrossRefGoogle Scholar
  5. Beinert, H. (1977). In Iron—Sulfur Proteins (W. Lovenberg, ed.), Vol. III, pp. 61 - 100, Academic Press, New York.Google Scholar
  6. Beinert, H. (1978). Methods Enzymol. 54, 133 - 150.CrossRefGoogle Scholar
  7. Beinert, H., and Hemmerich, P. (1965). Biochem. Biophys. Res. Commun. 18, 212 - 220.CrossRefGoogle Scholar
  8. Beinert, H., Ackrell, B. A. C., Kearney, E. B., and Singer, T. P. (1975). Eur. J. Biochem. 54, 185 - 194.CrossRefGoogle Scholar
  9. Beinert, H., Hansen, R. E., and Hartzell, C. R. (1976). Biochim. Biophys. Acta 423, 339 - 355.CrossRefGoogle Scholar
  10. Beinert, H., Ackrell, B. A. C., Vinogradov, A. D., Kearney, E. B., and Singer, T. P. (1977). Arch. Biochem. Biophys. 182, 95 - 106.CrossRefGoogle Scholar
  11. Beinert, H., Shaw, R. W., Hansen, R. E., and Hartzell, C. R. (1980). Biochim. Biophys. Acta 591, 458 - 470.CrossRefGoogle Scholar
  12. Coles, C. J., Holm, R. H., Kurtz, D. M., Jr., Orme-Johnson, W. H., Rawlings, J., Singer, T. P., and Wong, G. B. (1979). Proc. Natl. Acad. Sci. USA 76, 3805 - 3808.CrossRefGoogle Scholar
  13. Erecinska, M., Wilson, D. F., and Blasie, J. K. (1978). Biochim. Biophys. Acta 501, 53-62, 63 - 71.Google Scholar
  14. Gibson, J. F., Hall, D. O., Thornley, J. F., and Whatley, F. (1966). Proc. Natl. Acad. Sci. USA 56, 987 - 990.CrossRefGoogle Scholar
  15. Gutman, M., Singer, T. P., and Beinert, H. (1972). Biochemistry 11, 556 - 562.CrossRefGoogle Scholar
  16. Hartzell, C. R., and Beinert, H. (1976). Biochim. Biophys. Acta 423, 323 - 338.CrossRefGoogle Scholar
  17. Hartzell, C. R., Hansen, R. E., and Beinert, H. (1973). Proc. Natl. Acad. Sci. USA 70, 2477 - 2481.CrossRefGoogle Scholar
  18. Heron, C., Smith, S., and Ragan, C. I. (1979). Biochem. J. 181, 435 - 443.Google Scholar
  19. Ingledew, W. J., and Ohnishi, T. (1980). Biochem. J. 186, 111 - 117.Google Scholar
  20. Ingledew, W. J., Salerno, J. C., and Ohnishi, T. (1976). Arch. Biochem. Biophys. 177, 176 - 184.CrossRefGoogle Scholar
  21. Keilin, D. (1966). In The History of Cell Respiration and Cytochrome, (J. Keilin, ed.), Cambridge Univ. Press, Cambridge.Google Scholar
  22. Kent, T. A., Dreyer, J.-L., Emptage, M. H., Moura, I., Moura, J. J. G., Huynh, B. H., Xavier, A. V., LeGall, J., Beinert, H., Orme-Johnson, W. H., and Münck, E. (1981). In Interaction between Iron and Proteins in Oxygen and Electron Transport (C. Ho, ed.), Elsevier/North-Holland, Amsterdam, in press.Google Scholar
  23. Kroger, A. (1976). FEBS Lett. 65, 278-280.Google Scholar
  24. Lovenberg, W. (ed.) (1977). In Iron—Sulfur Proteins, Vol. I—III, Academic Press, New York.Google Scholar
  25. Moss, T. H., Shapiro, E., King, T. E., Beinert, H., and Hartzell, C. (1978). J. Biol. Chem. 253, 8072 - 8073.Google Scholar
  26. Ohnishi, T. (1979). In Membrane Proteins in Energy Transduction (R. A. Capaldi, ed.), pp. 1 - 87, Dekker, New York.Google Scholar
  27. Ohnishi, T., Lim, J., Winter, D. B., and King, T. E. (1976). J. Biol. Chem. 251, 2105 - 2109.Google Scholar
  28. Orme-Johnson, N. R., Hansen, R. E., and Beinert, H. (1974). J. Biol. Chem. 249, 1928 - 1939.Google Scholar
  29. Rieske, J. S., Hansen, R. E., and Zaugg, W. S. (1964). J. Biol. Chem. 239, 3017 - 3022.Google Scholar
  30. Ruzicka, F. J., and Beinert, H. (1977). J. Biol. Chem. 252, 8440 - 8445.Google Scholar
  31. Ruzicka, F. J., and Beinert, H. (1978). J. Biol. Chem. 253, 2514 - 2517.Google Scholar
  32. Ruzicka, F. J., Beinert, H., Schepler, K. L., Dunham, W. R., and Sands, R. H. (1975). Proc. Natl. Acad. Sci. USA 72, 2886 - 2890.CrossRefGoogle Scholar
  33. Salerno, J. C., Blum, H., and Ohnishi, T. (1979a). Biochim. Biophys. Acta 547, 270 - 281.CrossRefGoogle Scholar
  34. Salerno, J. C., Lim, J., King, T. E., Blum, H., and Ohnishi, T. (1979b). J. Biol. Chem. 254, 4828 - 4835.Google Scholar
  35. Shaw, R. W., Hansen, R. E., and Beinert, H. (1978a). J. Biol. Chem. 253, 6637 - 6640.Google Scholar
  36. Shaw, R. W., Hansen, R. E., and Beinert, H. (1978b). Biochim. Biophys. Acta 504, 187 - 199.CrossRefGoogle Scholar
  37. Tweedle, M. F., Wilson, L. J., García-Irriguez, L., Babcock, G. T., and Palmer, G. (1978). J. Biol. Chem. 253, 8065 - 8071.Google Scholar
  38. Van Gelder, B. F., and Beinert, H. (1969). Biochim. Biophys. Acta 189, 1 - 24.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Helmut Beinert
    • 1
  1. 1.Institute for Enzyme ResearchUniversity of WisconsinMadisonUSA

Personalised recommendations