Advertisement

Structure of Cytochrome c Oxidase

Recent Progress
  • Angelo Azzi

Abstract

Cytochrome c oxidase (ferricytochrome c: oxygen oxidoreductase, EC 1.9.3.1) is a complex enzyme that can catalyze the transfer of four electrons from its substrate ferricytochrome c to molecular oxygen and at the same time pump protons across the inner mitochondrial membrane from the matrix to the cytosol space (Capaldi and Briggs, 1976; Wikström and Krab, 1979; Azzi and Casey, 1979; Azzi, 1981). In this process a proton gradient is generated in which the free energy of the redox process is conserved (Wikström, 1977; Casey et al., 1979a; Sigel and Carafoli, 1979; Mitchell, 1966). The heme content of cytochrome c oxidase indicates a minimum molecular weight for the enzyme of approximately 140,000. The same molecular weight can be calculated for the monomer structure by summing the molecular weights of the seven subunits of the enzyme. It contains 4 one-electron redox centers, namely two a hemes and two coppers.

Keywords

Cytochrome Oxidase Redox Center Beef Heart Paracoccus Denitrificans Molecular Weight Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariano, B. H., and Azzi, A. (1980). Biochem. Biophys. Res. Commun. 93, 478–485.CrossRefGoogle Scholar
  2. Azzi, A. (1980). Biochim. Biophys. Acta, 594, 231–252.Google Scholar
  3. Azzi, A., and Casey, R. P. (1979). Mol. Cell. Biochem. 28, 169–184.CrossRefGoogle Scholar
  4. Bill, K., Casey, R. P., Broger, C., and Azzi, A. (1980). FEBS Lett. 120, 248–250.CrossRefGoogle Scholar
  5. Birchmeier, W., Kohler, C. E., and Schatz, G. (1976). Proc. Natl. Acad. Sci. USA 73, 4334–4338.CrossRefGoogle Scholar
  6. Bisson, R., Gutweniger, H., and Montecucco, C. (1977). FEBS Lett. 81, 147–150.CrossRefGoogle Scholar
  7. Bisson, R., Azzi, A., Gutweniger, H., Colonna, R., Montecucco, C., and Zanotti, A. (1978). J. Biol. Chem. 253, 1874–1880.Google Scholar
  8. Bisson, R., Montecucco, C., Gutweniger, H., and Azzi, A. (1979a). J. Biol. Chem. 254, 9962–9999.Google Scholar
  9. Bisson, R., Montecucco, C., Gutweniger, H., and Azzi, A. (1979b). Biochem. Soc. Trans. 7, 156–160.Google Scholar
  10. Briggs, M. M., and Capaldi, R. A. (1977). Biochemistry 16, 73–77.CrossRefGoogle Scholar
  11. Buse, G., Steffens, G. J., Steffens, G. C. M., Sacher, R., and Erdweg, M. (1980). In First European Bioenergetics Conference, pp. 41–42, Patron, Bologna.Google Scholar
  12. Capaldi, R. A., and Briggs, M. (1976). In The Enzymes of Biological Membranes (A. Martonosi, ed.), Vol. 1V, pp. 87–102, Wiley, New York.Google Scholar
  13. Casey, R. P., Chappell, J. B., and Azzi, A. (1979a). Biochem. J. 182, 149–156.Google Scholar
  14. Casey, R. P., Thelen, M., and Azzi, A. (1979b). Biochem. Biophys. Res. Commun. 87, 1044–1051.CrossRefGoogle Scholar
  15. Casey, R. P., Thelen, M., and Azzi, A. (1980). J. Biol. Chem. 255, 3994–4000.Google Scholar
  16. Chapman, D., Gómez-Fernandez, J. C., and Goíii, F. M. (1979). FEBS Leu. 98, 211–223.CrossRefGoogle Scholar
  17. Dockter, M. E., Steinemann, A., and Schatz, G. (1978). J. Biol. Chem. 253, 311–317.Google Scholar
  18. Fuller, S. D., Capaldi, R. A., and Henderson, R. (1979). J. Mol. Biol. 134, 305–327.CrossRefGoogle Scholar
  19. Henderson, R., Capaldi, R. A., and Leigh, J. S. (1977). J. Mol. Biol. 112, 631–648.CrossRefGoogle Scholar
  20. Jost, P., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G. (1973). Biochim. Biophys. Acta 311, 141–152.CrossRefGoogle Scholar
  21. Kawato, S., Sigel, E., Carafoli, E., and Cherry, R. J. (1980). J. Biol. Chem. 255, 5508–5510.Google Scholar
  22. Ludwig, B. (1980). Biochim. Biophys. Acta, 594, 117–189.Google Scholar
  23. Ludwig, B., and Schatz, G. (1980). Proc. Natl. Acad. Sci. USA 77, 196–200.CrossRefGoogle Scholar
  24. Ludwig, B., Downer, N. W., and Capaldi, R. A. (1979). Biochemistry 18, 1401–1407.CrossRefGoogle Scholar
  25. Marsh, D., Watts, A., Maschke, W., and Knowles, P. F. (1978). Biochem. Biophys. Res. Commun. 81, 397–402.CrossRefGoogle Scholar
  26. Merle, P., and Kadenbach, B. (1980). Eur. J. Biochem. 105, 499–507.CrossRefGoogle Scholar
  27. Mitchell, P. (1966). Biol. Rev. 41, 445–502.CrossRefGoogle Scholar
  28. Ozawa, T., Suzuki, H., and Tanaka, M. (1980). Proc. Natl. Acad. Sci. USA 77, 928–930.CrossRefGoogle Scholar
  29. Poyton, R. O., and Schatz, G. (1975). J. Biol. Chem. 250, 752–761.Google Scholar
  30. Prochaska, C., Bisson, R., and Capaldi, R. A. (1980). Biochemistry 19, 3174–3179.CrossRefGoogle Scholar
  31. Robinson, N. C., and Capaldi, R. A. (1977). Biochemistry 16, 375–381.CrossRefGoogle Scholar
  32. Saraste, M., Penttilä, T., and Wikström, M. (1980). FEBS Lett. 114, 35–38.CrossRefGoogle Scholar
  33. Seelig, A., and Seelig, J. (1978). Hoppe-Seylers Z. Physiol. Chem. 359, 1747–1756.CrossRefGoogle Scholar
  34. Sigel, E., and Carafoli, E. (1979). J. Biol. Chem. 254, 10572–10574.Google Scholar
  35. Steffens, G., and Buse, G. (1979). Hoppe-Seylers Z. Physiol. Chem. 360, 613–619.Google Scholar
  36. Steffens, G. C. M., Steffens, G. J., and Buse, G. (1979). Hoppe-Seylers Z. Physiol. Chem. 360, 1641–1650.CrossRefGoogle Scholar
  37. Swanson, M. S., Quintanilha, A. T., and Thomas, D. D. (1980). J. Biol. Chem. 255, 7494–7502.Google Scholar
  38. Werner, S. (1977). Eur. J. Biochem. 79, 103–110.CrossRefGoogle Scholar
  39. Wikström, M. K. F. (1977). Nature (London) 266, 271–273.CrossRefGoogle Scholar
  40. Wikström, M., and Krab, K. (1979). Biochim. Biophys. Acta 549, 177–222.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Angelo Azzi
    • 1
  1. 1.Medizinisch-chemisches Institut der UniversitätBernSwitzerland

Personalised recommendations