Structure of Cytochrome c Oxidase

  • Roderick A. Capaldi
  • Stephen D. Fuller
  • Victor Darley-Usmar


Cytochrome c oxidase (EC is a multisubunit enzyme containing two heme a moieties and two copper atoms as prosthetic groups, functioning to catalyze the reduction of molecular oxygen to water in the reaction: 4 cytochrome c 2+ + 4H+ + O2 ⇌ 4 cytochrome c 3+ + 2H2O. The energy released during this electron transfer reaction is conserved by the oxidase complex as a proton gradient (Wikström, 1977; Wikström and Saari, 1977; Casey et al., 1979) for subsequent use in ion transport or ATP synthesis. Our goals in studying the structure of cytochrome c oxidase are not only to understand the functioning of the enzyme but also to determine those features of the protein that allow it to integrate into the membrane, an environment where it is partly buried in an essentially hydrocarbon medium and partly exposed to water. In this short review we describe our recent progress in determining the structure of beef heart cytochrome c oxidase.


Prosthetic Group Subunit Structure Oxidase Complex Beef Heart Paracoccus Denitrificans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barrell, B. G., Bankier, A. T., and Drouin, J. (1979). Nature (London) 282, 189–194.CrossRefGoogle Scholar
  2. Bisson, R., Azzi, A., Gutweniger, H., Colonna, R., Montecucco, C., and Zanotti, A. (1978). J. Biol. Chem. 253, 1874–1880.Google Scholar
  3. Bisson, R., Montecucco, C., Gutweniger, H., and Azzi, A. (1979). J. Biol. Chem. 254, 9962–9965.Google Scholar
  4. Bisson, R., Jacobs, B., and Capaldi, R. A. (1980). Biochemistry 19, 4173–4178.CrossRefGoogle Scholar
  5. Bonitz, S. G., Coruzzi, G., Thalenfeld, B. W., Tzagoloff, A., and Macino, G. (1980). J. Biol. Chem. 255, 11927–11941.Google Scholar
  6. Briggs, M. M., and Capaldi, R. A. (1978). Biochem. Biophys. Res. Commun. 80, 553–559.CrossRefGoogle Scholar
  7. Buse, G., Steffens, G. J., Steffens, G. C. M., Sacher, R., and Erdeg, M. (1981). Abcdefg, In Interaction between Iron and Proteins in Electron Transport ( C. Ho, ed.), Elsevier, Amsterdam, in pressGoogle Scholar
  8. Casey, R. P., Thelen, M., and Azzi, A. (1979). Biochem. Biophys. Res. Commun. 87, 1044–1051.CrossRefGoogle Scholar
  9. Darley-Usmar, V. M., Alizai, N., Al-Ayash, A. I., Jones, G. D., Sharpe, A., and Wilson, M. T. (1981). Comp. Biochem. Physiol., 68B, 445–456.Google Scholar
  10. Downer, N. W., Robinson; N. C., and Capaldi, R. A. (1976). Biochemistry 15, 2930–2936.CrossRefGoogle Scholar
  11. Ferguson-Miller, S., Brautigan, D. L., and Margoliash, E. (1976). J. Biol. Chem. 251, 1104–1115.Google Scholar
  12. Frey, T. G., Chan, S. H. P., and Schatz, G. (1978). J. Biol. Chem. 253, 4389–4395.Google Scholar
  13. Fuller, S. F., Capaldi, R. A., and Henderson, R. (1979). J. Mol. Biol. 134, 305–327.CrossRefGoogle Scholar
  14. Henderson, R., Capaldi, R. A., and Leigh, J. S. (1977). J. Mol. Biol. 112, 631–648.CrossRefGoogle Scholar
  15. Keilin, D., and Hartree, E. F. (1938). Nature (London) 141, 870–871.CrossRefGoogle Scholar
  16. Laemmli, V. K. (1970). Nature (London) 227, 681–685.CrossRefGoogle Scholar
  17. Ludwig, B., and Schatz, G. (1980). Proc. Natl. Acad. Sci. USA 77, 196–200.CrossRefGoogle Scholar
  18. Ludwig, B., Downer, N. W., and Capaldi, R. A. (1979). Biochemistry 18, 1401–1407.CrossRefGoogle Scholar
  19. Mackey, L. N., Kuwana, T., and Hartzell, C. R. (1973). FEBS Lett. 36, 326–329.CrossRefGoogle Scholar
  20. Merle, P., and Kadenbach, B. (1980). Eur. J. Biochem. 105, 499–507.CrossRefGoogle Scholar
  21. Poyton, R. O., and Schatz, G. (1975). J. Biol. Chem. 250, 752–761.Google Scholar
  22. Prochaska, L., Bisson, R., and Capaldi, R. A. (1980). Biochemistry 19, 3174–3179.CrossRefGoogle Scholar
  23. Sacher, R., Buse, G., and Steffens, C. M. (1979). Hoppe-Seylers Z. Physiol. Chem. 360, 1377–1383.CrossRefGoogle Scholar
  24. Schatz, G., and Mason, T. L. (1974). Annu. Rev. Biochem. 43, 51–87.CrossRefGoogle Scholar
  25. Sebald, W., Machleidt, W., and Otto, J. (1973). Eur. J. Biochem. 38, 311–314.CrossRefGoogle Scholar
  26. Seki, S., Hayashi, H., and Oda, T. (1970). Arch. Biochem. Biophys. 138, 110–121.CrossRefGoogle Scholar
  27. Steffens, G. J., and Buse, G. (1976). Hoppe-Seylers Z. Physiol. Chem. 357, 1125–1137.CrossRefGoogle Scholar
  28. Sun, F. F., Prezbundowski, K. S., Crane, F. L., and Jacobs, E. E. (1968). Biochim. Biophys. Acta 153, 804–818.CrossRefGoogle Scholar
  29. Thalenfeld, B. E., and Tzagoloff, A. (1980). J. Biol. Chem. 255, 6173–6180.Google Scholar
  30. Vik, S. B. (1980). Ph.D. thesis, University of Oregon.Google Scholar
  31. Wikström, M. K. F. (1977). Nature (London) 266, 271–273.CrossRefGoogle Scholar
  32. Wikström, M. K. F., and Saari, H. T. (1977). Biochim. Biophys. Acta 462, 347–361.CrossRefGoogle Scholar
  33. Winter, D. B., Bruyninkx, W. J., Foulke, F. G., Grinich, N. P., and Mason, H. S. (1980). J. Biol. Chem. 255, 11408–11414.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Roderick A. Capaldi
    • 1
  • Stephen D. Fuller
    • 1
  • Victor Darley-Usmar
    • 1
  1. 1.Institute of Molecular BiologyUniversity of OregonEugeneUSA

Personalised recommendations