Mechanism of Active Proton Translocation by Cytochrome Systems

  • Sergio Papa


The cytochrome systems of mitochondria and plasma membrane of prokaryotes catalyze the transfer of reducing equivalents from dehydrogenases to oxygen, or other oxidants, and convert the energy so made available into transmembrane thermodynamic potential difference of protons, \( \Delta {{\tilde{\mu }}_{{{H}^{+}}}} \) (Mitchell, 1966, 1980a; Papa, 1976; Haddock and Jones, 1977; Wikström and Krab, 1979).


Proton Pump Oxygen Reduction Electron Flow Aerobic Oxidation Proton Translocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, R. L., Sweetland, J., Ludwig, B., and Capaldi, R. A. (1979). Proc. Natl. Acad. Sci. USA, 76, 741–745. Bonaventura, C., Bonaventura, J., Brunori, M., and Wilson, M. T. (1978). FEBS Lett. 85, 30–34.Google Scholar
  2. Boyer, P. D., Chance, B., Ernster, L., Mitchell, P., Racker, E., and Slater, E. C. (1977). Annu. Rev. Biochem. 46, 955–1026.CrossRefGoogle Scholar
  3. Brand, M. D. (1977). Biochem. Soc. Trans. 5, 1615–1620.Google Scholar
  4. Casey, R. P., Chappell, J. B., and Azzi, A. (1979). Biochem. J. 183, 149–156.Google Scholar
  5. Coin, J. T., and Hinkle, P. C. (1979). In Membrane Bioenergetics (C. P. Lee, G. Schatz, and L. Ernster, eds.), pp. 405–412, Addison-Wesley, Reading, Mass.Google Scholar
  6. Crofts, A. R., Crowther, D., and Tierney, G. V. (1975). In Electron Transfer Chains and Oxidative Phosphorylation (E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater, and N. Siliprandi, eds.), pp. 233–241, North-Holland, Amsterdam.Google Scholar
  7. Haddock, B. A., and Jones, C. W. (1977). Bacteriol. Rev. 41, 47–99.Google Scholar
  8. Hinkle, P. (1973). Fed. Proc. 32, 1988–1992.Google Scholar
  9. Lehninger, A. L. (1978). Protons and Ions Involved in Fast Dynamic Phenomena, pp. 435–452, Elsevier, Amsterdam.Google Scholar
  10. Lorusso, M., Capuano, F., Boffoli, D., Stefanelli, R., and Papa, S. (1979). Biochem. J. 182, 133–147.Google Scholar
  11. Lorusso, M., Boffoli, D., Capuano, F., Capitanio, N., Pace, V., and Papa, S. (1980). EBEC Short Reports 1, 99–100.Google Scholar
  12. Mitchell, P. (1966). Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, England.Google Scholar
  13. Mitchell, P. (1976). J. Theor. Biol. 62, 327–367.CrossRefGoogle Scholar
  14. Mitchell, P. (1980b). In Oxidases and Related Oxidation-Reduction Systems (T. E. King, H. S. Mason, and M. Morrison, eds.), Vol. 3, Wiley, New York, in press.Google Scholar
  15. Mitchell, P. (1980a). Ann. N.Y. Acad. Sci. 341, 564–584.CrossRefGoogle Scholar
  16. Mitchell, P., and Moyle, J. (1967). In Biochemistry of Mitochondria (E. C. Slater, Z. Kaniuga, and L Wojtczak, eds.), pp. 55–74, Academic Press/PWN, London/Warsaw.Google Scholar
  17. Mitchell, P., Moyle, J., and Mitchell, R. (1979). Methods Enzymol. 55 (F), 627–640.CrossRefGoogle Scholar
  18. Moyle, J., and Mitchell, P. (1978). FEBS Lett. 88, 268–272.CrossRefGoogle Scholar
  19. Papa, S. (1976). Biochim. Biophys. Acta 456, 39–84.Google Scholar
  20. Papa, S., Guerrieri, F., Lorusso, M., and Simone, S. (1973). Biochimie 55, 703–716.CrossRefGoogle Scholar
  21. Papa, S., Guerrieri, F., and Lorusso, M. (1974). Biochim. Biophys. Acta 357, 181–192.CrossRefGoogle Scholar
  22. Papa, S., Guerrieri, F., Lorusso, M., Izzo, G., Boffoli, D., and Capuano, F. (1977). Biochemistry of Membrane Transport (G. Semenza and E. Carofoli, eds.), pp. 504–519, Springer-Verlag, Berlin.Google Scholar
  23. Papa, S., Guerrieri, F., Lorusso, M., Izzo, G., Boffoli, D., and Stefanelli, R. (1978). In Membrane Proteins (P. Nicholls, J. V. Moller, P. L. Jorgensen, and A. J Moody, eds.), pp. 37–48. Pergamon Press, Elsmford, N.Y.Google Scholar
  24. Papa, S., Capuano, F. Markert, M., and Altamura, N. (1980a) FEBS Lett. 111, 243–248.CrossRefGoogle Scholar
  25. Papa, S., Guerrieri, F., Lorusso, M., Izzo, G., Boffoli, D., Capuano, F., Capitanio, N., and Altamura, N. (1980b). Biochem. J. 192, 203–218.Google Scholar
  26. Papa, S., Guerrieri, F., and Lorusso, M. (1980c). EBEC Short Reports 1, 19–20.Google Scholar
  27. Papa, S., Guerrieri, F., Lorusso, M., Izzo, G., and Capuano, F. (1981a). In Function of Quinones in Energy Conserving Systems (B. L. Trumpower, ed.), Academic Press, New York, in press.Google Scholar
  28. Papa, S., Lorusso, M., Izzo, G., and Capuano, F. (1981b). Biochem. J. 194, 395–406.Google Scholar
  29. Prince, R. C., and Dutton, P. L. (1976). FEBS Lett. 65, 117–119.CrossRefGoogle Scholar
  30. Sigel, E., and Carafoli, E. (1978). Eur. J. Biochem. 89, 119–123.CrossRefGoogle Scholar
  31. Sigel, E., and Carafoli, E. (1980). Eur. J. Biochem. 111, 299–306.CrossRefGoogle Scholar
  32. Sorgato, M. C., and Ferguson, S. J. (1978). FEBS Lett. 90, 178–182.CrossRefGoogle Scholar
  33. Trumpower, B. L. (1981). J. Bioenerg. Biomembr., 13, 1–24.CrossRefGoogle Scholar
  34. Wikström, M. K. F. (1973). Biochim. Biophys. Acta 301, 155–193.Google Scholar
  35. Wikström, M. K. F. (1977). Nature (London) 266, 271–273.CrossRefGoogle Scholar
  36. Wikström, M. K. F., and Krab, K. (1979). Biochim. Biophys. Acta 549, 177–222.Google Scholar
  37. Wikström, M. K. F., and Saari, H. T. (1977). Biochim. Biophys. Acta 462, 347–361.CrossRefGoogle Scholar
  38. Yu, C. A., and Yu, L. (1980). Biochem. Biophys. Res. Commun. 96, 286–292.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Sergio Papa
    • 1
  1. 1.Institute of Biological Chemistry, Faculty of MedicineUniversity of BariBariItaly

Personalised recommendations