Regulation of in Vivo Mitochondrial Oxidative Phosphorylation

  • David F. Wilson


The regulation of mitochondrial respiration in vivo is designed to maintain a supply of cellular ATP under conditions for which its hydrolysis is sufficiently energetic to do the required metabolic work. In vivo, various metabolic pathways in the mitochondrial matrix (citric acid cycle, fatty acid oxidation, etc.) contain dehydrogenases, which catalyze the transfer of reducing equivalents from substrates to NAD+ and FAD to form NADH and FADH2. These coenzymes are then reoxidized by the respiratory chain, serving as the source of the reducing equivalents that reduce molecular oxygen to water. The amounts of NADH and FADH2 available to the respiratory chain are determined by the metabolic pathways being utilized, but in general, NADH provides most of the total reducing equivalents. Metabolic regulation ensures that these equivalents (NAD couple) are available at a relatively constant oxidation-reduction potential (from −240 mV to −280 mV depending on cell type and metabolic status). This differs markedly from the conditions normally utilized for evaluation of the regulation of mitochondrial functions in suspensions of isolated mitochondria. In the latter case, reducing substrate is added in excess and the potential of the NAD couple can be as negative as −350 mV. This is one of the reasons care must be exercised in extrapolating from in vitro measurements to in vivo function.


Respiratory Rate Oxidative Phosphorylation Adenine Nucleotide Citric Acid Cycle Mitochondrial Oxidative Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akerboom, T. M., Bookelmann, H., and Tager, J. M. (1977). FEBS Lett. 74, 50–54.CrossRefGoogle Scholar
  2. Asimakis, G. K., and Aprille, J. R. (1980). Arch. Biochem. Biophys. 203, 307–316.CrossRefGoogle Scholar
  3. Brawand, F., Folly, G., and Walter, P. (1980). Biochim. Biophys. Acta 590, 285–289.CrossRefGoogle Scholar
  4. Chance, B. (1976). Circ. Res. 38, 131–138.Google Scholar
  5. Davis, E. J., and Lumeng, L. (1975). J. Biol. Chem. 250, 2275–2282.Google Scholar
  6. Erecinska, M., Veech, R. L., and Wilson, D. F. (1974). Arch. Biochem. Biophys. 160, 412–421.CrossRefGoogle Scholar
  7. Erecinska, M., Stubbs, M., Miyata, Y., Ditre, C. M., and Wilson, D. F. (1977). Biochim. Biophys. Acta 462, 20–35.CrossRefGoogle Scholar
  8. Ereciriska, M., Wilson, D. F., and Nishiki, K. (1978). Am. J. Physiol. 234 (3), C82 - C89.Google Scholar
  9. Erecidska, M., Davis, J. S., and Wilson, D. F. (1979). Arch. Biochem. Biophys. 197, 463–469.CrossRefGoogle Scholar
  10. Hassinen, I. E., and Hiltunen, K. (1975). Biochim. Biophys. Acta 408, 319–330.CrossRefGoogle Scholar
  11. Heldt, H. W. (1967). In Mitochondrial Structure and Compartmentalization (E. Quagliariello, S. Papa, E. C. Slater, and J. M. Tager, eds.), pp. 260–267, Adriatica Editrice, Bari.Google Scholar
  12. Heldt, H. W., and Pfaff, E. (1969). Eur. J. Biochem. 10, 494–500.CrossRefGoogle Scholar
  13. Holian, A., Owen, C. S., and Wilson, D. F. (1977). Arch. Biochem. Biophys. 181, 164–171.CrossRefGoogle Scholar
  14. Jones, D. P., and Mason, H. S. (1978). J. Biol. Chem. 253, 4874–4880.Google Scholar
  15. Kemp, A., Jr., Groot, G. S. P., and Reitsma, H. J. (1969). Biochim. Biophys. Acta 180, 28–34.CrossRefGoogle Scholar
  16. Klingenberg, M., and Rottenberg, H. (1977). Eur. J. Biochem. 73, 125–130.CrossRefGoogle Scholar
  17. Klingenberg, M., and Schollmeyer, P. (1961). Biochem. Z. 335, 243–262.Google Scholar
  18. Klingenberg, M., Heldt, H. W., and Pfaff, E. (1969). In The Energy Level and Metabolic Control in Mitochondria, (S. Papa, J. M. Tager, E. Quagliarello, and E. C. Slater, eds.) pp. 237–253, Adriatica Editrice, Bari.Google Scholar
  19. Lemasters, J. J., and Sowers, A. E. (1979). J. Biol. Chem. 254, 1248–1251.Google Scholar
  20. Longmuir, I. S. (1957). Biochem. J. 57, 378–382.Google Scholar
  21. Nohl, H., and Klingenberg, M. (1978). Biochim. Biophys. Acta. 505, 155–169.Google Scholar
  22. Oshino, N., and Sugano, T., Oshino, R., and Chance, B. (1974). Biochim. Biophys. Acta 368, 298–310.CrossRefGoogle Scholar
  23. Owen, C. S., and Wilson, D. F. (1974). Arch. Biochem. Biophys. 161, 581–591.CrossRefGoogle Scholar
  24. Petersen, L. C., Nicholls, P., and Degn, H. (1974). Biochem. J. 142, 247–252.Google Scholar
  25. Pfaff, E., and Klingenberg, M. (1968). Eur. J. Biochem. 6, 66–79.CrossRefGoogle Scholar
  26. Reed, E. B. (1976). Life Sci. 19, 1307–1322.CrossRefGoogle Scholar
  27. Schneiderman, G., and Goldstick, T. K. (1976). Adv. Exp. Med. Biol. 75, 9–16.Google Scholar
  28. Souverijn, J. M., Huisman, L. A., Rosing, J., and Kemp, A., Jr. (1973). Biochim. Biophys. Acta 305, 185–198.CrossRefGoogle Scholar
  29. Stubbs, M., Vignais, P. V., and Krebs, H. A. (1978). Biochem. J. 172, 333–342.Google Scholar
  30. Sugano, T., Oshino, N., and Chance, B. (1974). Biochim. Biophys. Acta 347, 340–358.CrossRefGoogle Scholar
  31. Tamura, M., Oshino, N., Chance, B., and Silver, I. A. (1978). Arch. Biochem. Biophys. 191, 8–22.CrossRefGoogle Scholar
  32. Vignais, P. V., Vignais, P. M., and Doussiere, J. (1975). Biochim. Biophys. Acta 376, 219–230.CrossRefGoogle Scholar
  33. Villiers, C., Michejda, J. W., Block, M., Lauquin, G. J. M., and Vignais, P. V. (1979). Biochim. Biophys. Acta 546, 157–170.CrossRefGoogle Scholar
  34. Wilson, D. F., Stubbs, M., Veech, R. L., Erecifiska, M., and Krebs, H. A. (1974a). Biochem. J. 140, 57–64.Google Scholar
  35. Wilson, D. F., Stubbs, M., Oshino, N., and Ereciriska, M. (1974b). Biochemistry 13, 5305–5311.CrossRefGoogle Scholar
  36. Wilson, D. F., Owen, C. S., and Holian, A. (1977). Arch. Biochem. Biophys. 182, 749–762.CrossRefGoogle Scholar
  37. Wilson, D. F., Ereciriska, M., Drown, C., and Silver, I. A. (1979a). Arch. Biochem. Biophys. 195, 485–493.CrossRefGoogle Scholar
  38. Wilson, D. F., Owen, C. S., and Ereciriska, M. (1979b). Arch. Biochem. Biophys. 195, 494–504.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • David F. Wilson
    • 1
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations