Advertisement

The Biosynthesis of Bacterial Wall Teichoic Acids

  • I. C. Hancock
  • J. Baddiley

Abstract

As bacteria grow and divide they must continuously renew and enlarge their cell walls. Peptidoglycan chains synthesized from intracellular precursors must be extruded and cross-linked to the wall, lying outside the cytoplasmic membrane, while in gram-positive bacteria polymers such as teichoic acids, teichuronic acids, and polysaccharides become covalently linked to the external peptidoglycan. The way these processes are catalyzed and controlled by membrane proteins is a fascinating field of study. This review concerns recent developments in our knowledge of how one class of wall polymer, teichoic acid, is synthesized and integrated into the wall. The details of teichoic acid structure and earlier work on its biosynthesis have been thoroughly reviewed by Baddiley (1972).

Keywords

Glycerol Phosphate Teichoic Acid Main Polymer Chain Muramic Acid Peptidoglycan Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R. G., Hussey, H., and Baddiley, J. (1972). Biochem. J. 127, 11–25.Google Scholar
  2. Anderson, R. G., Douglas, J., Hussey, H., and Baddiley, J. (1973). Biochem. J. 136, 871–876.Google Scholar
  3. Baddiley, J. (1972). In Essays in Biochemistry (P. N. Campbell and F. Dickens, eds.), Vol. 8, pp. 35–77, Academic Press, New York.Google Scholar
  4. Baddiley, J., and Neuhaus, F. C. (1960). Biochem. J. 75, 579–587.Google Scholar
  5. Bracha, R., and Glaser, L. (1976a). J. Bacterial. 125, 872–879.Google Scholar
  6. Bracha, R., and Glaser, L. (1976b). Biochem. Biophys. Res. Commun. 72, 1091–1094.CrossRefGoogle Scholar
  7. Bracha, R., Davidson, R., and Mirelman, D. (1978). J. Bacterial. 134, 412–418.Google Scholar
  8. Brooks, D., Mays, L. L., Hatefi, Y., and Young, F. E. (1971). J. Bacteriol. 107, 223–229.Google Scholar
  9. Burger, M. M., and Glaser, L. (1964). J. Biol. Chem. 239, 3168–3177.Google Scholar
  10. Childs, W. C., and Neuhaus, F. C. (1980). J. Bacteriol. 143, 293–301.Google Scholar
  11. Chiu, T., Burger, M. M., and Glaser, L. (1966). Arch. Biochem. Biophys. 116, 358–367.CrossRefGoogle Scholar
  12. Chiu, T., Younger, J., and Glaser, L. (1968). J. Bacteriol. 95, 2044–2050.Google Scholar
  13. Fiedler, F., and Glaser, L. (1974). J. Biol. Chem. 249, 2684–2689.Google Scholar
  14. Fischer, W., and Rösel, P. (1980). FEBS Leu. 119, 224–226.CrossRefGoogle Scholar
  15. Glaser, L., and Lindsay, B. (1974). Biochem. Biophys. Res. Commun. 59, 1137–1144.CrossRefGoogle Scholar
  16. Hancock, I. C. (1981). European J. Biochem. 119, 85–90.CrossRefGoogle Scholar
  17. Hancock, I. C., and Baddiley, J. (1976). J. Bacteriol. 125, 880–886.Google Scholar
  18. Hancock, I. C., Wiseman, G., and Baddiley, J. (1976). FEBS Lett. 69, 75–78.CrossRefGoogle Scholar
  19. Hanover, J. A., and Lennartz, W. J. (1979). J. Biol. Chem. 254, 9237–9246.Google Scholar
  20. Heckels, J. E., Archibald, A. R., and Baddiley, J. (1975). Biochem. J. 149, 637–647.Google Scholar
  21. Hussey, H., Brooks, D., and Baddiley, J. (1969). Nature (London) 221, 665–666.CrossRefGoogle Scholar
  22. Ishimoto, N., and Strominger, J. L. (1966). J. Biol. Chem. 241, 639–645.Google Scholar
  23. Kennedy, L. D., and Shaw, D. R. D. (1968). Biochem. Biophys. Res. Commun. 32, 861–865.CrossRefGoogle Scholar
  24. Lambert, P. A., Coley, J., and Baddiley, J. (1977). FEBS Lett. 79, 327–330.CrossRefGoogle Scholar
  25. Leaver, J., Hancock, I. C., and Baddiley, J. (1981). J. Bacteriol. 146, 847–852.Google Scholar
  26. McArthur, H. A. I., Roberts, F. W., Hancock, I. C., and Baddiley, J. (1978). FEBS Lett. 86, 193–200.CrossRefGoogle Scholar
  27. McArthur, H.A.I., Hancock, I. C., Roberts F. W., and Baddiley, J. (1980a). FEBS Lett. 111, 317–323.CrossRefGoogle Scholar
  28. McArthur, H. A. I., Roberts, F. W., Hancock, I. C., and Baddiley, J. (1980b). Bioorg. Chem. 9, 55–62.CrossRefGoogle Scholar
  29. McArthur, H. A. I., Hancock. I. C., and Baddiley, J. (1981). J. Bacteriol. 145, 1222–1231.Google Scholar
  30. McCloskey, M. A., and Troy, F. A. (1980). Biochemistry 19, 2056–2060.CrossRefGoogle Scholar
  31. Mauck, J., and Glaser, L. (1972a). Proc. Natl. Acad. Sci. USA 69, 2386–2390.CrossRefGoogle Scholar
  32. Mauck, J., and Glaser, L. (1972b). J. Biol. Chem. 247, 1180–1187.Google Scholar
  33. Neuhaus, F. C., Linzer, R., and Reusch, V. M. (1974). Ann. N.Y. Acad. Sci. 235, 502–518.CrossRefGoogle Scholar
  34. Roberts, F. W., McArthur, H. A. I., Hancock, I. C., and Baddiley, J. (1979). FEBS Lett. 97, 211–216.CrossRefGoogle Scholar
  35. Tomasz, A., McDonnell, M., Westphal, M., and Zanati, E. (1975). J. Biol. Chem. 250, 337–341.Google Scholar
  36. Tori, M., Kabat, E. A., and Bezer, A. E. (1964). J. Exp. Med. 120, 13–15.CrossRefGoogle Scholar
  37. Tynecka, Z., and Ward, J. B. (1975). Biochem. J. 146, 253–267.Google Scholar
  38. Ward, J. B. (1981). Microbiol. Rev. 45, 211–243.Google Scholar
  39. Ward, J. B., and Perkins, B. (1973). Biochem. J. 135, 721–728.Google Scholar
  40. Watkinson, R. J., Hussey, H., and Baddiley, J. (1971). Nature (London) 229, 57–59.Google Scholar
  41. Weppner, L., and Neuhaus, F. C. (1977). J. Biol. Chem. 252, 2296–2303.Google Scholar
  42. Wyke, A. W., and Ward, J. B. (1975). Biochem. Biphys. Res. Commun. 65, 877–885.CrossRefGoogle Scholar
  43. Wyke, A. W., and Ward, J. B. (1977a). FEBS Lett. 73, 159–163.CrossRefGoogle Scholar
  44. Wyke, A. W., and Ward, J. B. (1977b). J. Bacteriol. 134, 412–418.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • I. C. Hancock
    • 1
  • J. Baddiley
    • 1
  1. 1.Microbiological Chemistry Research LaboratoryThe UniversityNewcastle upon TyneEngland

Personalised recommendations