Compositional Domain Structure of Lipid Membranes

  • Ernesto Freire
  • Brian Snyder


During the past few years it has become evident that the molecular constituents of biological membranes are not randomly organized within the bilayer matrix and that many of their physical and functional properties are sensitive to the particular way in which lipid and protein molecules are distributed within the bilayer (Taylor et al., 1971; Shimshick and McConnell, 1973; Hui and Parsons, 1975; Fishman and Brady, 1976; Papahadjopoulos et al., 1976; van Dijck et al.,1978; Thompson, 1978; Correa-Freire et al., 1979). There are various types of ordered molecular arrangements, ranging from nonspecific aggregation or lateral phase separation processes to highly specific molecular interactions leading to the formation of complex structural patterns (Satir, 1976; Lee, 1977; Caspar et al., 1977; Makowski et al., 1977; Wallace and Engelman, 1978). In general, the lateral distribution of molecules in a lipid bilayer is dictated by the energetics of the interactions between the various components and as such is susceptible of being altered by changes in temperature, pH, ionic strength, concentration of ligand molecules, or other physicochemical variables (Wallace and Engelman, 1978; Pearson et al.,1979). The compositional domain structure of lipid membranes has been investigated by direct visualization using electron microscopy (Caspar et al.,1977; Pearson et al., 1979; Hui, 1981) or by appropriately transforming spectroscopic and physicochemical data into the parameters describing the lateral organization of the membrane (von Dreele, 1978; Wolber and Hudson, 1979; Klausner et al.,1980; Kleinfeld and Solomon, 1982). Recently we have developed a system of Monte Carlo calculations (see Binder, 1979, for a review on Monte Carlo methods) that allows us to generate with the computer lipid and protein distributions and to relate these distributions with various physical and functional properties of the mambrane (Freire and Snyder, 1980a,b, 1982; Snyder and Freire, 1980).


Lateral Distribution Monte Carlo Calculation Percolation Process Lateral Organization Physicochemical Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Binder, K. (1979). Top. Curr. Phys. 7, 1–45.CrossRefGoogle Scholar
  2. Caspar, D. L. D., Goodenough, D. A., Makowski, L., and Phillips, W. C. (1977). J. Cell Biol. 74, 605–628.CrossRefGoogle Scholar
  3. Coniglio, A., and Russo, L. (1979). J. Phys. A Math. Nucl. Gen. 12, 545–550.CrossRefGoogle Scholar
  4. Correa-Freire, M. C., Freire, E., Barenholz, Y., Biltonen, R., and Thompson, T. E. (1979). Biochemistry 18, 442–445.CrossRefGoogle Scholar
  5. Estep, T. N., Mountcastle, D. B., Biltonen, R. L., and Thompson, T. E. (1978). Biochemistry 17, 1984–1989.CrossRefGoogle Scholar
  6. Freire, E. and Snyder, B. (1980a). Biochemistry 19, 88–94.CrossRefGoogle Scholar
  7. Freire, E. and Snyder, B. (1980b). Biochim. Biophys. Acta 600, 643–654.CrossRefGoogle Scholar
  8. Freire, E. and Snyder, B. (1982). Biophys. J.,in press.Google Scholar
  9. Hui, S. W. (1981). Biophys. J. 34, 383–395.CrossRefGoogle Scholar
  10. Hui, S. W., and Parsons, D. F. (1975). Science 190, 383–384CrossRefGoogle Scholar
  11. Kleinfeld, A. M., and Solomon, A. K. (1982). In preparation.Google Scholar
  12. Lee, A. G. (1977). Biochim. Biphys. Acta 472, 285–344.Google Scholar
  13. Makowski, L., Caspar, D. L. D., Phillips W. C., and Goodenough, D. A. (1977). J. Cell Biol. 74, 629–645.CrossRefGoogle Scholar
  14. Papahadjopoulos, D., Vail, W. J., Pangborn, N. A., and Poste, G. (1976). Biochim. Biophys. Acta 448 265283.Google Scholar
  15. Pearson, R. P., Hui, S. W., and Stewart, T. P. (1979). Biochim. Biophys. Acta 557, 265–282.CrossRefGoogle Scholar
  16. Pownall, H. J., Massey, R. B., Kussnow, S. K., and Gotto, A. M., Jr. (1979). Biochemistry 18, 574–579.CrossRefGoogle Scholar
  17. Rubenstein, J. L. R., Smith, B. A., and McConnell, H. M. (1979). Proc. Natl. Acad. Aci. USA 76, 15–18. Satir, B. (1976), J. Supramol. Struct. 5, 381–389.Google Scholar
  18. Shimshick, E. J., and McConnell, H. M. (1973). Biochemistry 12, 2351–2360. Snyder, B., and Freire, E. (1980). Proc. Natl. Acad. Sci. USA 77, 4055–4059.Google Scholar
  19. Stoll, E., and Domb, C. (1978). J. Phys. A Math. Nucl. Gen. 11, L57—L61. Swaney, J. B. (1980). J. Biol. Chem. 255, 8791–8797.Google Scholar
  20. Taylor, R. B., Duffus, W. P. H., Raff, M. D., and De Petris, S. (1971). Nature (London) 233, 225–230.CrossRefGoogle Scholar
  21. Thompson, T. E. (1978). In Molecular Specialization and Symmetry in Membrane Function (A. K. Solomon and M. Karnovsky, eds.), pp. 78–98, Harvard University Press, Cambridge, Mass.Google Scholar
  22. von Dreele, P. H. (1978). Biochemistry 17, 3939–3943.CrossRefGoogle Scholar
  23. Wallace, B., and Engelman, D. (1978). Biochim. Biophys. Acta 508, 431–449.CrossRefGoogle Scholar
  24. Wolber, P. K., and Hudson, B. P. (1979). Biophys. J. 28, 197–210.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Ernesto Freire
    • 1
  • Brian Snyder
    • 2
  1. 1.Department of BiochemistryUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of BiochemistryUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations