Advertisement

Sterols and Membranes

  • Konrad Bloch

Abstract

Research described in this article was prompted by some speculations dealing with the ultimate origin and evolution of the sterol molecule and the corollary inquiry whether various structural features characteristic of cholesterol and its cyclic biosynthetic precursors can be rationalized in terms of function (Bloch, 1976). The riddle why certain organic molecules occur in cells and others do not has received surprisingly little attention. This Aristotelian question is perhaps unanswerable given the fact that knowledge of the chemical components comprising the primordial soup is beyond reach. Yet as I will attempt to show, in the instance of cholesterol the inquiry into the motives of nature has met with some success and the hypothesis verified experimentally to some extent. We can invoke evolutionary pressures as the driving force that shaped precursor molecules to the structure that ultimately came to reside and function competently in cell membranes.

Keywords

Fatty Acyl Chain Sterol Biosynthesis Sterol Molecule Sterol Side Chain Primordial Soup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreasen, A. A., and Stier, T. J. B. (1954). J. Cell. Comp. Physiol. 41, 23–27.CrossRefGoogle Scholar
  2. Bloch, K. (1976). In Reflections on Biochemistry(A. Kornberg, B. L. Horecker, L. Cornudella, and J. Oro, eds.), pp. 143–150, Pergamon Press, Oxford.Google Scholar
  3. Bloch, K. (1979). Crit. Rev. Biochem.7, 1–5.CrossRefGoogle Scholar
  4. Brockerhoff, H. (1974). Lipids 9, 645–650.CrossRefGoogle Scholar
  5. Buttke, T., and Bloch, K. (1980). Biochem. Biophys. Res. Commun. 92, 229–236.CrossRefGoogle Scholar
  6. Buttke, T., Jones, S., and Bloch, K. (1980). J. Bacteriol. 144, 124–138.Google Scholar
  7. Chang, T. Y., Telakowsky, C., vanden Heuvel, W., Alberts, A. W., and Vagelos, P. R. (1977). Proc. Natl. Acad. Sci. USA 74, 832–836.CrossRefGoogle Scholar
  8. Clark, A. J. and Bloch, K. (1959a). J. Biol. Chem. 234 2578–2582.Google Scholar
  9. Clark, A. J., and Bloch, K. (1959b). J. Biol. Chem. 234, 2583–2588.Google Scholar
  10. Corey, E. J., Russey, W. E., and Ortiz de Montellano, P. R. (1966). J. Am. Chem. Soc. 88, 4750–4751.CrossRefGoogle Scholar
  11. Dahl, C., Dahl, J., and Bloch, K. (1980). Biochemistry 19, 1462–1467.CrossRefGoogle Scholar
  12. Dahl, J., Dahl, C., and Bloch, K. (1980). Biochemistry 19, 1468–1472.Google Scholar
  13. Dahl, J., Dahl, C., and Bloch, K. (1981). J. Biol. Chem. 256, 87–91.Google Scholar
  14. Demel, R. A., and DeKruyff, B. (1976). Biochim. Biophys. Acta 457, 109–132.Google Scholar
  15. Gautschi, F., and Bloch, K. (1959). J. Biol. Chem. 243, 1343–1347.Google Scholar
  16. Goldberg, I., and Shechter, I. (1978). J. Bacteriol. 135, 717–720.Google Scholar
  17. Gollub, E. G., Liu, K., Dayan, J., Adlersberg, M., and Sprinson, D. B. (1977). J. Biol. Chem. 252, 2846–2854.Google Scholar
  18. Huang, C. (1976). Nature (London) 259, 242–244.CrossRefGoogle Scholar
  19. Huang, S. H. (1977). Lipids 12, 348–356.CrossRefGoogle Scholar
  20. Lala, A. K., Lin, H. K., and Bloch, K. (1978). Bioorg. Chem.7, 437–445.CrossRefGoogle Scholar
  21. Lala, A. K., Buttke, T. M., and Bloch, K. (1979). J. Biol. Chem. 254, 10582–10585.Google Scholar
  22. Mallory, F. B., and Conner, R. L. (1971). Lipids 6, 149–153.CrossRefGoogle Scholar
  23. Mallory, F. B., Gordon, J. T., and Conner, R. L. (1963). J. Am. Chem. Soc. 85, 1362–1363.CrossRefGoogle Scholar
  24. Minale, L., and Sodano, G. (1974). J. Chem. Soc. Perkin Trans. 1 1974, 1888–1892.CrossRefGoogle Scholar
  25. Nes, R. W., and McKean, M. L. (1977). In Biochemistry of Steroids and Other Isopentenoids, p. 375, University Park Press, Baltimore.Google Scholar
  26. Nes, R. W., Sekula, B. C., Nes, W. D., and Adler, J. H. (1978). J. Biol. Chem. 253, 6218–6225.Google Scholar
  27. Odriozola, J. M., Waitzkin, E., Smith, T. L., and Bloch, K. (1978). Proc. Natl. Acad. Sci. USA 75, 4107–4109.CrossRefGoogle Scholar
  28. Ohba, M., Sato, R., Yoshida, Y., Nishino, T., and Katsuki, H. (1978). Biochem. Biophys. Res. Commun. 85, 21–27.CrossRefGoogle Scholar
  29. Ourisson, G., Albrecht, P., and Rohmer, M. (1979). Pure Appl. Chem. 51, 709–729.CrossRefGoogle Scholar
  30. Popov, S., Carlson, R. M. K., Weymann, A., and Djerassi, C. (1975). Tetrahedron Lett. 31, 758–760.Google Scholar
  31. Poralla, K., Kannenberg, E., and Blume, A. (1980). FEBS Lett. 113, 107–110.CrossRefGoogle Scholar
  32. Razin, S. (1973). In Advances in Microbial Physiology(A. H. Rox and D. W. Tempest, eds.), pp. 1–80, Academic Press, New York.Google Scholar
  33. Semer, R., and Gelerinter, E. (1979). Chem. Phys. Lipids 23, 201–211.CrossRefGoogle Scholar
  34. Sharpless, K. B., Snyder, T. E., Spencer, T. A., Maheshwari, K. K., Guhn, G., and Clayton, R. B. (1968). J. Am. Chem. Soc. 90, 6874–6875.CrossRefGoogle Scholar
  35. Sharpless, K. B., Snyder, T. E., Spencer, T. A., Maheshwari, K. K., Nelson, J. A., and Clayton, R. B. (1969). J. Am. Chem. Soc. 91, 3394–3396.CrossRefGoogle Scholar
  36. Tanford, C. (1978). Science 200, 1012–1018.CrossRefGoogle Scholar
  37. Tornabene, T. G., Wolfe, R. S., Balch, W. E., Holzer, G. E., and Oro, J. (1978). J. Mol. Evol. 11, 259–266.CrossRefGoogle Scholar
  38. van Tamelen, E. E., Willet, J. D., Clayton, R. B., and Lord, K. (1966). J. Am. Chem. Soc. 88, 4752–4754.CrossRefGoogle Scholar
  39. Yeagle, P. L., Hutton, W. C., Huang, C., and Martin, R. (1976). Biochemistry 15, 2121–2124.CrossRefGoogle Scholar
  40. Yeagle, P. L., Martin, R., Lala, A. K., Lin, H. K., and Bloch, K. (1977). Proc. Natl. Acad. Sci. USA 74, 4924–4926.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Konrad Bloch
    • 1
  1. 1.The James Bryant Conant LaboratoriesHarvard UniversityCambridgeUSA

Personalised recommendations