Protein Translocation across the Membrane of the Endoplasmic Reticulum

  • Bernhard Dobberstein
  • David I. Meyer


The translocation of proteins across membranes is a feature common to all cells. In eukaryotes several distinct membranes are endowed with this capacity. Certain proteins (largely secretory) are translocated across the membrane of the endoplasmic reticulum (ER), while others are translocated across the membrane of mitochondria, chloroplasts, or peroxisomes. An understanding of the phenomenon of protein translocation depends upon answering three major questions: (1) What determines whether a protein will remain in the cytoplasm or will be translocated across a membrane? (2) How are the proteins selected to cross a specific membrane (endoplasmic reticulum, mitochondrial, chloroplast, or peroxisomal)? (3) What is the mechanism by which the actual physical translocation across the membrane occurs? This latter aspect requires the transfer of large hydrophilic moieties through a hydrophobic membrane and is certainly the most difficult to understand in molecular terms.


Signal Sequence Secretory Protein Rough Endoplasmic Reticulum Protein Translocation Semliki Forest Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austen, B. M. (1979). FEBS Lett. 103, 308–313.CrossRefGoogle Scholar
  2. Baty, D., and Lazdunski, C. (1979). Eur. J. Biochem. 102, 503–507.CrossRefGoogle Scholar
  3. Blobel, G. (1980). Proc. Natl. Acad. Sci. USA 77, 1496–1500.CrossRefGoogle Scholar
  4. Blobel, G., and Dobberstein, B. (1975). J. Cell. Biol. 67, 835–851, 852–862.Google Scholar
  5. Blobel, G., Walter, P., Chang, C. N., Goldman, B., Erickson, A. H., and Lingappa, V. R. (1979). In Symposia of the Society for Experimental Biology, Symposium XXXIII, pp. 9–36, Cambridge University Press, London.Google Scholar
  6. Bonatti, S., Canadda, R., and Blobel, G. (1979). J. Cell Biol. 80, 219–224.CrossRefGoogle Scholar
  7. Chua, N.-H., and Schmidt, G. W. (1979). J. Cell Biol. 81, 461–483.CrossRefGoogle Scholar
  8. Davis, B. D., and Tai, P.-C. (1980). Nature (London) 283, 433–438.CrossRefGoogle Scholar
  9. Dobberstein, B., Garoff, H., Warren, G., and Robinson, P. J. (1979). Cell 17, 759–769.CrossRefGoogle Scholar
  10. Emr, S. D., Hall, M. N., and Silhavy, T. J. (1980). J. Cell Biol. 86, 701–711.CrossRefGoogle Scholar
  11. Fraser, T., and Bruce, B. J. (1978). Proc. Natl. Acad. Sci. USA 75, 5936–5940.CrossRefGoogle Scholar
  12. Garoff, H., Simons, K., and Dobberstein, B. (1978). J. Mol. Biol. 124, 587–600.CrossRefGoogle Scholar
  13. Hortin, G., and Boime, I. (1980). J. Biol. Chem. 255, 8007–8010.Google Scholar
  14. Inouye, M., and Halegoua, S. (1980). CRC Crit. Rev. Biochem. 7, 339–371.CrossRefGoogle Scholar
  15. Jackson, R. C., and Blobel, G. (1977). Proc. Natl. Acad. Sci. USA 74, 5598–5602.CrossRefGoogle Scholar
  16. Jackson, R. C., and Blobel, G. (1980). Ann. N.Y. Acad. Sci. 343, 391–404.CrossRefGoogle Scholar
  17. Jackson, R. C., Walter, P., and Blobel, G. (1980). Nature (London) 286, 174–176.CrossRefGoogle Scholar
  18. Katz, F. N., Rothman, J. E., Lingappa, V. R., Blobel, G., and Lodish, H. F. (1977). Proc. Natl. Acad. Sci. USA 74, 3278–3282.CrossRefGoogle Scholar
  19. Koshland, D., and Botstein, D. (1980). Cell 20, 719–760.CrossRefGoogle Scholar
  20. Krangel, M. S., On, H. T., and Strominger, J. L. (1979). Cell 18, 979–991.CrossRefGoogle Scholar
  21. Kreibich, G., Czako-Graham, M., Grebenau, R., Mok, W., Rodriguez-Boulan, E., and Sabatini, D. (1978). J. Supramol. Structure 8, 279–302.CrossRefGoogle Scholar
  22. Lazarow, P. B. (1980). Ann. N.Y. Acad. Sci. 343, 293–301.CrossRefGoogle Scholar
  23. Lingappa, V. R., Katz, F. N., Lodish, H. F., and Blobel, G. (1978). J. Biol. Chem. 253, 8667–8670.Google Scholar
  24. Lingappa, V. R., Lingappa, J. R., and Blobel, G. (1979). Nature (London) 281, 117–121.CrossRefGoogle Scholar
  25. Majzoub, J. A., Rosenblatt, M., Fennick, B., Mannus, R., Kronenberg, H. M., Potts, J. T., Jr., and Habener, J. F. (1980). J. Biol. Chem. 255, 11478–11483.Google Scholar
  26. Meyer, D. I., and Dobberstein, B. (1980). J. Cell Biol. 87, 498–502, 503–508.Google Scholar
  27. Moreno, F., Fowler, A., Hall, M., Silhavy, T., Zabin, I., and Silhavy, M. (1980). Nature (London) 286, 356–360.CrossRefGoogle Scholar
  28. Patzelt, C., Labrecque, A. D., Duguid, J. R., Carroll, R. J., Keim, P. S., Heinrikson, R. L., and Steiner, D. F. (1978). Proc. Natl. Acad. Sci. USA 75, 1260–1264.CrossRefGoogle Scholar
  29. Schatz, G. (1979). FEBS Lett. 103, 203–211.CrossRefGoogle Scholar
  30. Szcesna, E., and Boime, I. (1976). Proc. Natl. Acad. Sci. USA 73, 1179–1183.CrossRefGoogle Scholar
  31. Talmadge, K., Stahl, S., and Gilbert, W. (1980a). Proc. Natl. Acad. Sci. USA 77, 3369–3373.CrossRefGoogle Scholar
  32. Talmadge, K., Kaufman, J., and Gilbert, W. (1980b). Proc. Natl. Acad. Sci. USA 77, 3988–3992.CrossRefGoogle Scholar
  33. Walter, P., Jackson, R. C., Marcus, M. M., Lingappa, V. R., and Blobel, G. (1979). Proc. Natl. Acad. Sci. USA 76, 1795–1799.CrossRefGoogle Scholar
  34. Warren, G., and Dobberstein, B. (1978). Nature (London) 273, 569–571.CrossRefGoogle Scholar
  35. Wickner, W. (1980). Science 210, 861–868.CrossRefGoogle Scholar
  36. Zwizinski, C., and Wickner, W. (1980). J. Biol. Chem. 255, 7973–7977.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Bernhard Dobberstein
    • 1
  • David I. Meyer
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergWest Germany

Personalised recommendations