The Use of Detergents for the Isolation of Intact Carrier Proteins, Exemplified by the ADP, ATP Carrier of Mitochondria

  • M. Klingenberg


In recent years, progress in handling detergents for the solubilization and isolation of integral membrane protein has been outstanding. Beginning in 1969, when our group embarked on the task of isolating and purifying the ADP, ATP carrier, no success was reached in the first 3 years because we used the then-popular methods for isolation of membrane proteins such as solubilization with cholate and deoxycholate combined with ammonium sulfate fractionation, organic solvents such as butanol, chloroethanol, lysolecithin, and even SDS (Klingenberg et al., 1974). Our objective was to isolate the membrane protein not only in a pure but also in the native state. Nonionic detergents were hardly used at that time, although they were already known to be excellent solubilizers of membranes. However, their use was not very popular, because they seemed difficult to handle during the purification; it seemed impossible to remove the large excess of detergent required for solubilization. Moreover, in several cases there was no clear assay for characterizing the protein in the native state.


Mixed Micelle Integral Membrane Protein Uncouple Protein Detergent Micelle Solubilizing Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aquila, H., Eiermann, W., and Klingenberg, M. (1976). Abstracts of the 10th International Congress of Biochemistryp. 345.Google Scholar
  2. Bojanovski, D., Schlimme, E., Wang, C. S., and Alaupovic, P. (1976). Eur. J. Biochem. 71, 539–548.CrossRefGoogle Scholar
  3. Brandolin, G., Meyer, C., Defaye, G., Vignais, P. M., and Vignais, P. V. (1974). FEBS Lett. 46,.149–153.CrossRefGoogle Scholar
  4. Engel, W. D., Schägger, H., and von Jagow, G. (1980). Biochim. Biophys. Acta 592, 211–222.CrossRefGoogle Scholar
  5. Esmann, M., Skou, J. C., and Christansen, C. (1979). Biochim. Biophys. Acta 567, 410–420.Google Scholar
  6. Hackenberg, H., and Klingenberg, M. (1980). Biochemistry 19, 548–555.CrossRefGoogle Scholar
  7. Helenius, A., and Simons, K. (1975). Biochim. Biophys. Acta 415, 29–79.Google Scholar
  8. Hokin, L. E., Dahl, J. L., Deupree, J. D., Dixon, J. F., Hackney, J. F., and Perdue, J. F. (1973). J. Biol. Chem. 248, 2593–2605.Google Scholar
  9. Klingenberg, M., Riccio, P., Aquila, H., Schmiedt, B., Grebe, K., and Topitsch, P. (1974). In Membrane Proteins in Transport and Phosphorylation (G. F. Azzone, M. Klingenberg, E. Quagliariello, and N. Siliprandi, eds.), pp. 229–243, North-Holland, Amsterdam.Google Scholar
  10. Klingenberg, M., Aquila, H., Krämer, R., Babel, W., and Feckl, J. (1977). In Biochemistry of Membrane Transport (G. Semenza and E. Carafoli, eds.), pp. 567–579, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  11. Klingenberg, M., Aquila, H., and Riccio, P. (1979a). Methods Enzymol. 56, 229–233.CrossRefGoogle Scholar
  12. Klingenberg, M., Hackenberg, H., Eisenreich, G., and Mayer, I. (1979b). In Function and Molecular Aspects of Biomembrane Transport (E. Quagliariello, F. Palmieri, S. Papa and, M. Klingenberg, eds.), pp. 291–303, Elsevier/North-Holland, Amsterdam.Google Scholar
  13. Kolbe, H. V. J., Böttrich, J., Genchi, G., Palmieri, F., and Kadenbach, B. (1981). FEBS Lett. 124, 265–269.CrossRefGoogle Scholar
  14. Krämer, R., and Klingenberg, M. (1977). Biochemistry 16, 4954–4961.CrossRefGoogle Scholar
  15. Krämer, R., and Klingenberg, M. (1979). Biochemistry 18, 4209–4215.CrossRefGoogle Scholar
  16. Krämer, R., and Klingenberg, M. (1980). FEBS Lett. 119, 257–260.CrossRefGoogle Scholar
  17. Krämer, R., Aquila, H., and Klingenberg, M. (1977). Biochemistry 16, 4949–4953.CrossRefGoogle Scholar
  18. Le Maire, M., Miller, J. V., and Tanford, C. (1976). Biochemistry 15, 2336–2342.CrossRefGoogle Scholar
  19. Lin, C. S., and Klingenberg, M. (1980). FEBS Lett. 113, 299–303.CrossRefGoogle Scholar
  20. Lin, C. S., Hackenberg, H., and Klingenberg, M. (1980). FEBS Lett. 113, 304–306.CrossRefGoogle Scholar
  21. Riccio, P., Aquila, H., and Klingenberg, M. (1975a). FEBS Lett. 56, 129–132.CrossRefGoogle Scholar
  22. Riccio, P., Aquila, H., and Klingenberg, M. (1975b). FEBS Lett. 56, 133–138.CrossRefGoogle Scholar
  23. Riccio, P., Schägger, H., Engel, W. D., and von Jagow, G. (1977). Biochim. Biophys. Acta 459, 250–262.CrossRefGoogle Scholar
  24. Shertzer, H. G., and Racker, E. (1976). J. Biol. Chem. 251, 2446–2452.Google Scholar
  25. Tanford, C. (1980). The Hydrophobic Effect: Formation of Micelles and Biological Membrane, Wiley, New York.Google Scholar
  26. Tanford, C., and Reynolds, J. A. (1976). Biochim. Biophys. Acta 457, 133–170.Google Scholar
  27. von Jagow, G., Schägger, H., Engel, W. D., Machleidt, W., Machleidt, I., and Kolb, H. J. (1978a). FEBS Lett. 91, 121–125.CrossRefGoogle Scholar
  28. von Jagow, G., Schägger, H., Engel, W. D., Riccio, P., Kolb, H. J., and Klingenberg, M. (1978b). Methods Enzymol. 53, 92–98.CrossRefGoogle Scholar
  29. Weiss, H., and Wingfield, P. (1979). Eur. J. Biochem. 99, 151–160.CrossRefGoogle Scholar
  30. Wohlrab, H. (1980). J. Biol. Chem. 255, 8170–8173.Google Scholar
  31. Yu, C. A., Yu, L., and King, T. E. (1974). J. Biol. Chem. 249, 4905–4910.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • M. Klingenberg
    • 1
  1. 1.Institute for Physical BiochemistryUniversity of MunichMunich 2West Germany

Personalised recommendations