Complementary Packing of Phosphoglyceride and Cholesterol Molecules in the Bilayer

  • C. Huang
  • J. T. Mason


It is well established for phospholipids that the molecular structure and packing properties of the hydrophobic region of the molecule are intimately coupled to the associated structural properties of the polar head group of the phospholipid. For example, phosphatidylethanolamine molecules extracted from biological sources such as hen egg yolk form both lamellar (or bilayer) and hexagonal type II phases when exposed to excess water at physiological temperatures (Reiss-Husson, 1967; Junger and Reinauser, 1969). In contrast, phosphatidylcholine molecules form only the bilayer structure under the same conditions (Luzzati and Husson, 1962; Luzzati, 1968). The large shift in the main endothermic transition temperature, T m, of the lipid hydrocarbon chains from the crystalline gel to the liquid-crystalline state serves as another example. The value of T m for synthetic [C16 : 0–C16 : 0] dipalmitoylphosphatidylcholine is 41.4°C (Mabrey and Sturtevant, 1976), whereas phosphatidylethanolamine with the same saturated hydrocarbon chains has a T m of about 63.8°C (Mabrey and Sturtevant, 1977). Even within the same phospholipid such as dipalmitoylphosphatidylcholine, an alteration in polar-head-group conformations or properties can be shown to affect the structural and packing properties of the hydrophobic portion of the lipid bilayers. For example, upon the addition of about 4 molecules of water per molecule of dipalmitoylphosphatidylcholine, the conformation and the mobility of the lipid polar head group in bilayers are found to be distinctly different from those in anhydrous solids (Griffin, 1976; Bush et al., 1980a). Any marked change in the structural motional properties of the polar head group of phospholipids upon hydration is not unexpected, for it is well known that the water molecules can associate with the polar head group of phospholipid molecules.


Polar Head Group Fatty Acyl Chain Phospholipid Molecule Cholesterol Molecule Steroid Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, C. M., Zucker, F. H., and Steitz, T. A. (1979). Science 204, 375–380.CrossRefGoogle Scholar
  2. Banks, R. D., Blake, C. C. F., Evans, P. K., Haser, R., Rice, D. W., Hardy, G. W., Marrett, M., and Phillips, A. W. (1979). Nature (London) 279, 773–777.CrossRefGoogle Scholar
  3. Bloch, K. (1965). Science 150, 19–28.CrossRefGoogle Scholar
  4. Bush, S. F., Adams, R. G., and Levin, I. W. (1980a). Biochemistry 19, 4429–4436.CrossRefGoogle Scholar
  5. Bush, S. F., Levin, H., and Levin, I. W. (1980b). Chem. Phys. Lipids 27, 101–111.CrossRefGoogle Scholar
  6. Clejan, S., Bittman, R. R., Deros, P. W., Isaacon, Y. A., and Rosenthal, A. F. (1979). Biochemistry 18, 2118–2125.CrossRefGoogle Scholar
  7. Craig, I. F., Boyd, G. S., and Suckling, K. E. (1978). Biochem. Biophys. Acta 508, 418–421.CrossRefGoogle Scholar
  8. Craven, B. M. (1976). Nature (London) 260, 727–729.CrossRefGoogle Scholar
  9. Franks, N. P. (1976). J. Mol. Biol. 100, 345–358.CrossRefGoogle Scholar
  10. Franks, N. P., and Lieb, W. R. (1979). J. Mol. Biol. 133, 469–500.CrossRefGoogle Scholar
  11. Griffin, R. G. (1976). J. Am. Chem. Soc. 98, 851–853.CrossRefGoogle Scholar
  12. Hitchock, P. B., Mason, R., Thomas, K. M., and Shipley, G. G. (1974). Proc. Natl. Acad. Sci. USA 71, 3036–3040.CrossRefGoogle Scholar
  13. Huang, C. (1977a). Lipids 4, 348–356.CrossRefGoogle Scholar
  14. Huang, C. (1977b). Chem. Phys. Lipids 19, 150–158.CrossRefGoogle Scholar
  15. Jones, M. N. (1975). Biological Interface, Elsevier, Amsterdam.Google Scholar
  16. Junger, E., and Reinauser, H. (1969). Biochem. Biophys. Acta 183, 304–308.CrossRefGoogle Scholar
  17. Keough, K. M., Oldfield, E., Chapman, D., and Beynon, P. (1973). Chem. Phys. Lipids 10, 37–50.CrossRefGoogle Scholar
  18. Kunau, W. H. (1976). Angew. Chem. Int. Ed. Engl. 15, 61–74.CrossRefGoogle Scholar
  19. Lagaly, G., Weiss, A., and Stuke, E. (1977). Biochim. Biophys. Acta 470, 331–341.CrossRefGoogle Scholar
  20. Lippert, J. L., and Peticolas, W. L. (1971). Proc. Natl. Acad. Sci. USA 68, 1572–1576.CrossRefGoogle Scholar
  21. Luzzati, V. (1968). In Biological Membranes(D. Chapman, ed.), pp. 71–123, Academic Press, New York.Google Scholar
  22. Luzzati, V., and Husson, F. (1962). J. Cell Biol. 12, 207–219.CrossRefGoogle Scholar
  23. Mabrey, S., and Sturtevant, J. M. (1976). Proc. Natl. Acad. Sci. USA 73, 3862–3866.CrossRefGoogle Scholar
  24. Mabrey, S., and Sturtevant, J. M. (1977). Biochem. Biophys. Acta 486, 444–450.Google Scholar
  25. Marcelja, S. (1974). Biochim. Biophys. Acta 367, 165–176.CrossRefGoogle Scholar
  26. Pauling, P. (1968). In Structural Chemistry and Molecular Biology(A. Rich and N. Davidson, eds.), pp. 553–565, Freeman, San Francisco.Google Scholar
  27. Pearson, R. H., and Pascher, I. (1979). Nature (London) 281, 499–501.CrossRefGoogle Scholar
  28. Reddy, V. V. R., Kupfer, D., and Caspi, E. (1977). J. Biol. Chem. 252, 2797–2801.Google Scholar
  29. Reiss-Husson, F. (1967). J. Mol. Biol. 25, 363–382.CrossRefGoogle Scholar
  30. Sakurai, I., Iwuyanaji, S., Sakwrai, T., and Sato, T. (1977). J. Mol. Biol. 117, 285–291.CrossRefGoogle Scholar
  31. Seelig, J. (1977). Q. Rev. Biophys. 10, 353–418.CrossRefGoogle Scholar
  32. Shieh, H. S., Hoard, L. G., and Nordman, C. E. (1977). Nature (London) 267, 287–289.CrossRefGoogle Scholar
  33. Shimakata, T., Mihava, K., and Sato, R. (1972). J. Biochem. 72, 1163–1174.Google Scholar
  34. Smith, I. C. P., Stockton, G. W., Tulloch, A. P., Polnaszek, C. F., and Johnson, K. G. (1977). J. Colloid Interface Sci. 58, 439–451.CrossRefGoogle Scholar
  35. Spiker, R. C., and Levin, I. W. (1975). Biochim. Biophys. Acta 388, 361–373.Google Scholar
  36. Suckling, K. E., Blair, H. A. F., Boyd, G. S., Craig, I. F., and Malcolm, B. R. (1979). Biochem. Biophys. Acta 351, 10–21.Google Scholar
  37. Sundaralingam, M. (1972). Ann. N.Y. Acad. Sci. 195, 324–355.CrossRefGoogle Scholar
  38. Thompson, T. E., and Huang, C. (1980). In Membrane Physiology(T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds.), pp. 27–48, Plenum Press, New York.Google Scholar
  39. Wennerström, H., and Lindblom, G. (1977). Q. Rev. Biophys. 10, 67–96.CrossRefGoogle Scholar
  40. Worcester, D. L., and Franks, N. P. (1976). J. Mol. Biol. 100, 359–375.CrossRefGoogle Scholar
  41. Yeagle, P. L., Hutton, W. C., Huang, C., and Martin, R. B. (1975). Proc. Natl. Acad. Sci. USA 72, 3477–3481.CrossRefGoogle Scholar
  42. Yeagle, P. L., Martin, R. B., Laka, A. K., Lin, H. K., and Bloch, K. (1977). Proc. Natl. Acad. Sci. USA 74, 4924–4926.CrossRefGoogle Scholar
  43. Zaccai, G., Büldt, G., Seelig, A., and Seelig, J. (1979). J. Mol. Biol. 134, 693–706.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • C. Huang
    • 1
  • J. T. Mason
    • 1
  1. 1.Department of BiochemistryUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations