NMR of Protein-Lipid Interactions in Model and Biological Membrane Systems

  • Eric Oldfield


Membranes are composed predominantly of lipids, proteins, and sterol molecules and are responsible at least in part for a wide variety of biochemical processes such as respiration, vision, photosynthesis, cell-cell recognition, and nerve impulse transmission. Not surprisingly then, there have been considerable efforts spent in attempting to characterize the molecular structure of, and intermolecular interactions between, individual membrane components, in an attempt to relate the structures of membranes to their function. In this short review we discuss recent developments in our understanding of the structure of membranes obtained by means of NMR spectroscopic techniques. We show that protein-lipid interactions in both model and intact biological membranes are characterized by a dynamic disordering of boundary-lipid hydrocarbon chains, as viewed by high-field deuterium NMR spectroscopy, while 31P spectra indicate significant disordering and/or immobilization within the phospholipid polar head group region due to association with protein. The effects are very different from those seen with cholesterol, and are in marked contrast to the old ideas of rigid, ordered “boundary-lipid” surrounding membrane proteins. We also present results suggesting that it will soon be possible to directly monitor the effects of lipid on protein dynamics by means of NMR spectroscopy.


Phase Transition Temperature Quadrupole Splitting Purple Membrane Pure Lipid Halobacterium Halobium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, R. W., Bell, J. D., Radda, G. K., and Richards, R. E. (1972). Biochim. Biophys. Acta 260, 161–163.Google Scholar
  2. Brown, M. F., and Seelig, J. (1978). Biochemistry 17, 381–384.CrossRefGoogle Scholar
  3. Burnell, E., Van Alphen, L., Verkleij, A., and DeKruijff, B. (1980). Biochim. Biophys. Acta 597, 492–501.CrossRefGoogle Scholar
  4. Caron, F., Mateu, L., Rigny, P., and Azerad, R. (1974). J. Mol. Biol. 85, 279–300.CrossRefGoogle Scholar
  5. Chapman, D., and Penkett, S. A. (1966). Nature (London) 211, 1304–1305.CrossRefGoogle Scholar
  6. Cullis, P. R., and deKruyff, B. (1976) Biochim. Biophys. Acta 436, 523–540.Google Scholar
  7. Curatolo, W., Sakura, J. D., Small, D. M., and Shipley, G. G. (1977). Biochemistry 16, 2313–2319.CrossRefGoogle Scholar
  8. Dahlquist, F. W., Muchmore, D. C., Davis, J. H., and Bloom, M. (1977). Proc. Natl. Acad. Sci. USA 74, 5435–5439.CrossRefGoogle Scholar
  9. Davis, J. H., Nichol, C. P., Weeks, G., and Bloom, M. (1979). Biochemistry 18, 2103–2112.CrossRefGoogle Scholar
  10. Dehlinger, P. J., Jost, P. C., and. Griffith, O. H. (1974). Proc. Natl. Acad. Sci. USA 71, 2280–2284.CrossRefGoogle Scholar
  11. Derbyshire, W., Gorvin, T. C., and Warner, D. (1969). Mol. Phys. 17, 401–407.CrossRefGoogle Scholar
  12. Grant, C. W. M., and McConnell, H. M. (1974). Proc. Natl. Acad. Sci. USA 71, 4653–4657.CrossRefGoogle Scholar
  13. Griffin, R. G. (1976). J. Am. Chem. Soc. 98, 851–853.CrossRefGoogle Scholar
  14. Griffin, R. G., Powers, L., and Pershan, P. S. (1978). Biochemistry 17, 2718–2722.CrossRefGoogle Scholar
  15. Hesketh, T. R., Smith, G. A., Houslay, M. D., McGill, K. A., Birdsall, N. J. M., Metcalfe, J. C., and Warren, G. B. (1976). Biochemistry 15, 4145–4151.CrossRefGoogle Scholar
  16. Hong, K., and Hubbell, W. L. (1972). Proc Natl. Acad. Sci. USA 69, 2617–2621.CrossRefGoogle Scholar
  17. Jost, P. C., and Griffith, O. H. (1978). In Cellular Function and Molecular Structure: A Symposium on Biophysical Approaches to Biological Problems (P. F. Agris, R. N. Loeppky, and B. D. Sykes, eds.), pp. 2554, Academic Press, New York.Google Scholar
  18. Jost, P. C., Capaldi, R. A., Vanderkooi, G., and Griffith, O. H. (1973a). J. Supramol. Struct. 1, 269–280.Google Scholar
  19. Jost, P., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G. (1973b). Biochim. Biophys. Acta 311, 141–152.CrossRefGoogle Scholar
  20. Jost, P. C., Griffith, O. H., Capaldi, R. A., and Vanderkooi, G. (1973c). Proc. Natl. Acad. Sci. USA 70, 480–484Google Scholar
  21. Jost, P. C., Nadakavukaren, K. K., and Griffith, O. H. (1977). Biochemistry 16, 3110–3114.CrossRefGoogle Scholar
  22. Kang, S. Y., Gutowsky, H. S., Hshung, J. C., Jacobs, R., King, T. E., Rice, D., and Oldfield, E. (1979a). Biochemistry 18, 3257–3267.CrossRefGoogle Scholar
  23. Kang, S. Y., Gutowsky, H. S., and Oldfield, E. (1979b). Biochemistry 18, 3268–3271.CrossRefGoogle Scholar
  24. Kang, S. Y., Kinsey, R., Rajan, S., Gutowsky, H. S., Gabridge, M. G., and Oldfield, E. (1980). J. Biol. Chem. 256, 1155–1159.Google Scholar
  25. Kleemann, W., and McConnell, H. M. (1976). Biochim. Biophys. Acta 419, 206–222.CrossRefGoogle Scholar
  26. Kohler, S. J., and Klein, M. P. (1976). Biochemistry 15, 967–973.CrossRefGoogle Scholar
  27. Ladbrooke, B. D., Williams, R. M., and Chapman, D. (1968). Biochim. Biophys. Acta 150, 333–340. Longmuir, K. J., Capaldi, R. A., and Dahlquist, F. W. (1977). Biochemistry 16, 5746–5755. Marcelja, S. (1976). Biochim. Biophys. Acta 455, 1–7.Google Scholar
  28. Marsh, D., Watts, A., Maschke, W., and Knowles, P. F. (1978). Biochem. Biophys. Res. Commun. 81, 397–402.CrossRefGoogle Scholar
  29. Miller, R. G. (1980). Nature (London) 287, 166–167.CrossRefGoogle Scholar
  30. Moore, B. M., Lentz, B. R., and Meissner, G. (1978). Biochemistry 17, 5248–5255.CrossRefGoogle Scholar
  31. Niederberger, W., and Seelig, J. (1976). J. Am. Chem. Soc. 98, 3704–3706.CrossRefGoogle Scholar
  32. Oldfield, E., and Rothgeb, T. M. (1980). J. Am. Chem. Soc. 102, 3635–3637.CrossRefGoogle Scholar
  33. Oldfield, E., Chapman, D., and Derbyshire, W. (1971). FEBS Lett. 16, 102–104.CrossRefGoogle Scholar
  34. Oldfield, E., Chapman, D., and Derbyshire, W. (1972). Chem. Phys. Lipids 9, 69–81.CrossRefGoogle Scholar
  35. Oldfield, E., Gilmore, R., Glaser, M., Gutowsky, H. S., Hshung, J. C., Kang, S. Y., King, T. E., Meadows, M., and Rice, D. (1978a). Proc. Natl. Acad. Sci. USA 75, 4657–4660.CrossRefGoogle Scholar
  36. Oldfield, E., Meadows, M., Rice, D., and Jacobs, R. (1978b). Biochemistry 17, 2727–2740.CrossRefGoogle Scholar
  37. Oldfield, E., Janes, N., Kinsey, R., Kintanar, A., Lee, R. W. K., Rothgeb, T. M., Schramm, S., Skarjune, R., Smith, R., and Tsai, M.-D. (1981). Biochem. Soc. Symp. 46, 155–181.Google Scholar
  38. Owicki, J. C., Springgate, M. W., and McConnell, H. M. (1978). Proc. Natl. Acad. Sci. USA 75, 1616–1619.CrossRefGoogle Scholar
  39. Papahadjopoulos, D., Moscarello, M., Eylar, E. H., and Isac, T. (1975). Biochim. Biophys. Acta 401, 317–335.CrossRefGoogle Scholar
  40. Rajan, S., Kang, S. Y., Gutowsky, H. S., and Oldfield, E. (1980). J. Biol. Chem. 256, 1160–1166.Google Scholar
  41. Rice, D., and Oldfield, E. (1979). Biochemistry 18, 3272–3279.CrossRefGoogle Scholar
  42. Rothgeb, T. M., and Oldfield, E. (1980). J. Biol. Chem. 256, 1432–1446.Google Scholar
  43. Schröder, H. (1977). J. Chem. Phys. 67, 1617–1619.CrossRefGoogle Scholar
  44. Scott, H. L., and Cherng, S. L. (1978). Biochim. Biophys. Acta 510, 209–215.CrossRefGoogle Scholar
  45. Seelig, J. (1977). Q. Rev. Biophys. 10, 353–418.CrossRefGoogle Scholar
  46. Seelig, J. (1978). Biochim. Biophys. Acta 515, 105–140.Google Scholar
  47. Stier, A., Finch, S. A. E., and Bosterling, B. (1978). FEBS Lett. 91, 109–112.CrossRefGoogle Scholar
  48. Stockton, G. W., Johnson, K. G., Butler, K. W., Tulloch, A. P., Boulanger, Y., Smith, I. C. P., Davis, J. H., and Bloom, M. (1977). Nature (London) 269, 267–268.CrossRefGoogle Scholar
  49. Warren, G. B., Toon, P. A., Birdsall, N. J. M., Lee, A. G., and Metcalfe, J. C. (1974). Biochemistry 13, 5501–5507.CrossRefGoogle Scholar
  50. Warren, G. B., Houslay, M. D., Metcalfe, J. C., and Birdsall, N. J. M. (1975). Nature (London) 255, 684–687.Google Scholar
  51. Yeagle, P. L., Hutton, W. C., Huang, C., and Martin, R. B. (1975). Proc. Natl. Acad. Sci. USA 72, 3477–3481.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Eric Oldfield
    • 1
  1. 1.School of Chemical SciencesUniversity of IllinoisUrbanaUSA

Personalised recommendations