Electron Microscopy and Computer Image Reconstruction of Membrane Crystals

  • K. R. Leonard
  • H. Weiss


Membrane proteins exist partially in a phospholipid bilayer and partially in the adjacent aqueous medium. For structural stability they therefore need as their environment a narrow band of nonpolar hydrocarbon bounded by polar groups. A pure aqueous solution is not satisfactory; likewise, a simple organic solvent would be unsuitable. The native environment can, however, be simulated successfully by detergent micelles (Tanford and Reynolds, 1976; Helenius et al., 1979). This partially hydrophobic and partially hydrophilic property of membrane proteins renders it difficult to prepare three-dimensional crystals that are suitable for high-resolution single-crystal X-ray analysis. So far, only a small number of membrane proteins have been reported to crystallize (Tanaka et al.,1980; Michel and Oesterhelt, 1980; Garavito and Rosenbusch, 1980).


Phospholipid Bilayer Purple Membrane Dimensional Reconstruction Beef Heart Detergent Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blaurock, A. E. and Stoeckenius, W. (1971). Nature New Biol. 223, 152–154.Google Scholar
  2. DeRosier, D. J., and Klug, A. (1968). Nature (London) 217, 130–134.CrossRefGoogle Scholar
  3. Erickson, H. P., and Klug, A. (1971). Philos. Trans. Roy. Soc. London Ser. B 261, 105–118.Google Scholar
  4. Fuller, S. D., Capaldi, R. A., and Henderson, R. (1979). J. Mol. Biol. 134, 305–327.CrossRefGoogle Scholar
  5. Garavito, R. M., and Rosenbusch, J. P. (1980). J. Cell Biol. 86, 327–329.CrossRefGoogle Scholar
  6. Helenius, A., Caslin, D. R. M., Fries, E., and Tanford, C. (1979). Methods Enzymol. 56, 734–749.CrossRefGoogle Scholar
  7. Henderson, R., and Unwin, P. N. T. (1975). Nature (London) 257, 28–32.CrossRefGoogle Scholar
  8. Henderson, R., Capaldi, R. A., and Leigh, J. S. (1977). J. Mol. Biol. 112, 631–648.CrossRefGoogle Scholar
  9. Hoppe, W., Langer, R., Knesch, G., and Poppe, Ch. (1968). Naturwissenschaften 55, 33–1/2 1/8.Google Scholar
  10. Hovmöller, S., Leonard, K. R., and Weiss, H. (1981). FEBS Lett. 123, 118–122.CrossRefGoogle Scholar
  11. Leonard, K. R., Arad, T., Wingfield, P., and Weiss, H. (1981). J. Mol. Biol, 149, 259–274.CrossRefGoogle Scholar
  12. Michel, H., and Oesterhelt, D. (1980). Proc. Natl. Acad. Sci. USA 77, 1283–1285.CrossRefGoogle Scholar
  13. Michel, H., Oesterhelt, D., and Henderson, R. (1980). Proc. Natl. Acad. Sci. USA 77, 338–342.CrossRefGoogle Scholar
  14. Tanaka, M., Suzuki, H., and Ozawa, T. (1980). Biochim. Biophys. Acta 612, 295–298.Google Scholar
  15. Tanford, C., and Reynolds, J. A. (1976). Biochim. Biophys. Acta 457, 113–170.Google Scholar
  16. Unwin, P. N. T. (1974). J. Mol. Biol. 87, 657–670.CrossRefGoogle Scholar
  17. Unwin, P. N. T., and Henderson, R. (1975). J. Mol. Biol. 94, 425–440.CrossRefGoogle Scholar
  18. Unwin, P. N. T., and Zampighi, G. (1980). Nature (London) 283, 545–549.CrossRefGoogle Scholar
  19. Vanderkooi, T., Senior, A. E., Capaldi, R. A., and Hayashi, H. (1972). Biochim. Biophys. Acta 274, 38–48.CrossRefGoogle Scholar
  20. Wingfield, P., Arad, T., Leonard, K. R., and Weiss, H. (1979). Nature (London) 280, 696–697.CrossRefGoogle Scholar
  21. Zingsheim, H. P., Neugebauer, D.Ch., Barrantes, F. J., and Frank, J. (1980). Proc. Natl. Acad. Sci. USA 77, 952–956.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • K. R. Leonard
    • 1
  • H. Weiss
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergWest Germany

Personalised recommendations