Advertisement

Properties of Phospholipid Transfer Proteins

  • R. Akeroyd
  • K. W. A. Wirtz

Abstract

Owing to the extremely low critical micelle concentration of natural phospholipids, spontaneous transfer of monomer phospholipid molecules between membrane surfaces through an aqueous phase is very slow (Martin and MacDonald, 1976; Thilo, 1977). Movement of phospholipids would be restricted to the membrane bilayer if it were not for the ability of phospholipid transfer proteins to shuttle phospholipids between membranes (for reviews see Dawson, 1973; Wirtz, 1974; Zilversmit and Hughes, 1976; Kader, 1977). Since the original observation in 1968 that phospholipid transfer activity is present in the membrane-free cytosol of rat liver (Wirtz and Zilversmit, 1968), it has become clear that the cytosol of eukaryotic cells contains a number of phospholipid transfer proteins of different specificity. So far three distinct classes of transfer proteins have been purified to homogeneity: (1) the phosphatidylcholine transfer protein from bovine and rat liver (Kamp et al.,1973; Poorthuis et al.,1980); (2) the phosphatidylinositol transfer proteins from bovine brain and heart (Helmkamp et al., 1974; DiCorleto et al.,1979); (3) the nonspecific phospholipid transfer proteins from rat and bovine liver (Bloj and Zilversmit, 1977; Crain and Zilversmit, 1980a) and rat hepatoma (Dyatlovitskaya et al.,1978). In this series, the phosphatidylcholine transfer proteins are specific for phosphatidylcholine whereas the phosphatidylinositol transfer proteins display a dual specificity with a preference for phosphatidylinositol and, to a lesser extent, phosphatidylcholine. The nonspecific proteins transfer all common diacyl phospholipids as well as cholesterol and are very likely identical to the sterol carrier protein 2 recently isolated from rat liver (Noland et al., 1980). Less well characterized transfer proteins have also been found for other typical membrane components such as phosphatidylglycerol (Van Golde et al., 1980), cholesterol (Erickson et al.,1978), and glucosylceramide (Metz and Radin, 1980). This paper presents a summary on the characterization and properties of the transfer proteins purified to date.

Keywords

Transfer Protein Phosphatidic Acid Transfer Activity Bovine Liver Dual Specificity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akeroyd, R., Moonen, P., Westerman, J., Puyk, C., and Wirtz, K. W. A. (1981). Eur. J. Biochem., 114, 385–391.CrossRefGoogle Scholar
  2. Baranska, J., and Grabarek, Z. (1979). FEBS Lett. 104, 253–257.CrossRefGoogle Scholar
  3. Bloj, B., and Zilversmit, D. B. (1977). J. Biol. Chem. 252, 1613–1619.Google Scholar
  4. Crain, R. C., and Zilversmit, D. B. (1980a). Biochemistry 19, 1433–1439.CrossRefGoogle Scholar
  5. Crain, R. C., and Zilversmit, D. B. (1980b). Biochim. Biophys. Acta 620, 37–48.Google Scholar
  6. Dawson, R. M. C. (1973). Sub-Cell. Biochem. 2, 69–89.Google Scholar
  7. Demel, R. A., Wirtz, K. W. A., Kamp, H. H., Geurts van Kessel, W. S. M., and van Deenen, L. L. M. (1973). Nature New Biol. 246, 102–105.Google Scholar
  8. Demel, R. A., Kalsbeek, R., Wirtz, K. W. A., and van Deenen, L. L. M. (1977). Biochim. Biophys. Acta 466, 10–22.CrossRefGoogle Scholar
  9. DiCorleto, P. E., and Zilversmit, D. B. (1977). Biochemistry 16, 2145–2150.CrossRefGoogle Scholar
  10. DiCorleto, P. E., Warach, J. B., and Zilversmit, D. B. (1979). J. Biol. Chem. 254, 7795–7802.Google Scholar
  11. Dyatlovitskaya, E. V., Timofeeva, N. G., and Bergelson, L. D. (1978). Eur. J. Biochem. 82, 463–471.CrossRefGoogle Scholar
  12. Erickson, S. K., Meyer, D. J., and Gould, R. G. (1978). J. Biol. Chem. 253, 1817–1826.Google Scholar
  13. Helmkamp, G. M. (1980a). Biochim. Biophys. Acta 595, 222–234.CrossRefGoogle Scholar
  14. Heimkamp, G. M. (1980b). Biochemistry 19, 2050–2056.CrossRefGoogle Scholar
  15. Heimkamp, G. M., Harvey, M. S., Wirtz, K. W. A., and van Deenen, L. L. M. (1974). J. Biol. Chem. 249, 6382–6389.Google Scholar
  16. Helmkamp, G. M., Nelemans, S. A., and Wirtz, K. W. A. (1976). Biochim. Biophys. Acta 424, 168–182.Google Scholar
  17. Illingworth, D. R., and Portman, O. W. (1972). Biochim. Biophys. Acta 280, 281–289.Google Scholar
  18. Johnson, L. W., and Zilversmit, D. B. (1975). Biochim. Biophys. Acta 375, 165–175.CrossRefGoogle Scholar
  19. Kader, J. C. (1977). In Dynamic Aspects of Cell Surface Organization (G. Poste and G. L. Nicolson, eds.), pp. 127–204, Elsevier/North-Holland, Amsterdam.Google Scholar
  20. Kamp, H. H., Wirtz, K. W. A., and van Deenen, L. L. M. (1973). Biochim. Biophys. Acta 318, 313–325.CrossRefGoogle Scholar
  21. Kamp. H. H., Wirtz, K. W. A., Baer, P. R., Slotboom, A. J., Rosenthal, A. F., Paltauf, F., and van Deenen, L. L. M. (1977). Biochemistry 16, 1310–1316.CrossRefGoogle Scholar
  22. Lumb, R. H., Kloosterman, A. D., Wirtz, K. W. A., and van Deenen, L. L. M. (1976). Eur. J. Biochem. 69, 15–22.CrossRefGoogle Scholar
  23. Machida, K., and Ohnishi, S. (1978). Biochim. Biophys. Acta 507, 156–164.CrossRefGoogle Scholar
  24. Machida, K., and Ohnishi, S. (1980). Biochim. Biophys. Acta 596, 201–209.CrossRefGoogle Scholar
  25. Martin, F. J., and MacDonald, R. C. (1976). Biochemistry 15, 321–327.CrossRefGoogle Scholar
  26. Metz, R. J., and Radin, N. S. (1980). J. Biol. Chem. 255, 4463–4467.Google Scholar
  27. Michell, R. H. (1975). Biochim. Biophys. Acta 415, 81–148.Google Scholar
  28. Moonen, P., Haagsman, H. P., van Deenen, L. L. M., and Wirtz, K. W. A. (1979). Eur. J. Biochem. 99, 439–445.CrossRefGoogle Scholar
  29. Noland, B. J., Arebalo, R. E., Hansbury, E., and Scallen, T. J. (1980). J. Biol. Chem. 255, 4282–4289.Google Scholar
  30. Poorthuis, B. J. H. M., van der Krift, T. P., Teerlink, T., Akeroyd, R., Hostetler, K. Y., and Wirtz, K. W. A. (1980). Biochim. Biophys. Acta 600, 376–380.CrossRefGoogle Scholar
  31. Thilo, L. (1977). Biochim. Biophys. Acta 469, 326–334.CrossRefGoogle Scholar
  32. van den Besselaar, A. M. H. P., Helmkamp, G. M., and Wirtz, K. W. A. (1975). Biochemistry 14, 1852–1858.CrossRefGoogle Scholar
  33. Van Golde, L. M. G., Oldenborg, V., Post, M., Batenburg, J. J., Poorthuis, B. J. H. M., and Wirtz, K. W. A. (1980). J. Biol. Chem. 255, 6011–6013.Google Scholar
  34. Wilson, D. B., Ellsworth, J. L., and Jackson, R. L. (1980). Biochim. Biophys. Acta 620, 550–561.Google Scholar
  35. Wirtz, K. W. A. (1974). Biochim. Biophys. Acta 344, 95–117.Google Scholar
  36. Wirtz, K. W. A., and Zilversmit, D. B. (1968). J. Biol. Chem. 243, 3596–3602.Google Scholar
  37. Wirtz, K. W. A., and Moonen, P. (1977). Eur. J. Biochem. 77, 437–443.CrossRefGoogle Scholar
  38. Wirtz, K. W. A., Vriend, G., and Westerman, J. (1979). Eur. J. Biochem. 94, 215–221.CrossRefGoogle Scholar
  39. Wirtz, K. W. A., Devaux, P. F., and Bienvenue, A. (1980). Biochemistry 19, 3395–3399.CrossRefGoogle Scholar
  40. Zilversmit, D. B., and Hughes, M. E. (1976). In Methods in Membrane Biology (E. D. Korn, ed.), Vol. 7, pp. 211–259, Plenum Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. Akeroyd
    • 1
  • K. W. A. Wirtz
    • 1
  1. 1.Laboratory of BiochemistryState University of UtrechtUtrechtThe Netherlands

Personalised recommendations