Advertisement

Molecular and Immunological Characterization of Human Melanoma-Associated Antigens

  • R. A. Reisfeld
  • D. R. Galloway
  • R. P. McCabe
  • Alton C. MorganJr.

Abstract

During the last decade, there has been an increasing amount of evidence indicating that the neoplastic state is characterized by cell-surface changes, and this development has led to a concerted effort by many investigators to characterize cell-surface markers associated with human tumor cells. This research effort was further stimulated by the anticipation that the thorough characterization of human tumor markers may aid in the delineation of neoplastic transformation and advance the development of immunological approaches for diagnosis, prognosis, and thereapy of cancer. In this regard, the finding of antigens that are shed into the extracellular environment of tumor cells has received considerable attention (Grimm et al., 1976; Bystryn, 1977; McCabe et al., 1978; Gupta et al., 1979; Galloway et al., 1981a), since it may further aid in the development of approaches designed to improve detection and therapy of cancer.

Keywords

Melanoma Cell Spend Culture Medium Immunological Characterization Oncofetal Antigen Culture Melanoma Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bissell, M. J., 1978, Transport as a rate limiting step in glucose metabolism in virus-transformed cells: Studies with cytochalasin B, J. Cell Physiol. 89: 701.CrossRefGoogle Scholar
  2. Brown, J. P., Wright, P. W., Hart, C. E., Hellström, K. E., and Hellström, I., 1980, Protein antigens of normal and malignant human cells identified by immunoprecipitation with monoclonal antibodies, J. Biol. Chem. 255: 4980.PubMedGoogle Scholar
  3. Bystryn, J. C., 1977, Release of cell surface tumor-associated antigens by viable melanoma cells from humans, J. Natl. Cancer Inst. 59: 325.Google Scholar
  4. Carey, T. E., Lloyd, K. O., and Takahashi, T., 1979, Cell surface antigen of human malignant melanoma: Solubilization and partial characterization, Proc. Natl. Acad. Sci. U.S.A. 76: 2898.PubMedCrossRefGoogle Scholar
  5. Chee, D. O., Boddie, A. W., Jr., Roth, J. A., and Morton, D. L., 1976, Production of melanoma-associated antigens by a defined malignant melanoma cell strain grown in chemically defined medium, Cancer Res. 36: 1503.PubMedGoogle Scholar
  6. Curry, R. A., Quaranta, V., Wilson, B. S., McCabe, R. P., Natali, P. G., Pellegrino, M. A., and Ferrone, S., 1979a, Expression of HLA antigens on cultured human melanoma cells: Lack of association with melanoma associated antigens, in: Current Trends in Tumor Immunology (S. Ferrone, C. Gorini, R. B. Herberman, and R. A. Reisfeld, eds.), pp. 347–376, Garland STPM Press, New York.Google Scholar
  7. Curry, R. A., Quaranta, V., Pellegrino, M. A., and Ferrone, S., 1979b, Serologically detectable human melanoma associated antigens are not genetically linked to HLA-A and B antigens, J. Immunol. 123: 2630.Google Scholar
  8. Datama, R., and Schwartz, R. T., 1979, Interference with glycosylation of glycoproteins: Inhibition of formation of lipid linked oligosaccharides in vivo, J. Biochem. 184: 113.Google Scholar
  9. Duskin, D., and Bornstein, P., 1978, Impaired conversion of procollagen to collagen by fibroblasts and bone treated with tunicamycin, an inhibitor of protein glycosylation, J. Biol. Chem. 252: 955.Google Scholar
  10. Engvall, E., and Ruoslahti, E., 1977, Binding of soluble form of fibroblast surface protein, fibronectin, to collagen, Int. J. Cancer 20: 1.PubMedCrossRefGoogle Scholar
  11. Galloway, D. R., McCabe, R. P., Pellegrino, M. A., Ferrone, S., and Reisfeld, R. A., 1981a, Tumor associated antigens in spent medium of human melanoma cells: Immunochemical characterization with xenoantisera, J. Immunol. 162: 62.Google Scholar
  12. Galloway, D. R., Imai, K., Ferrone, S., and Reisfeld, R. A., 1981b, Molecular profiles of human melanoma-associated antigens, Fed. Proc. Fed. Am. Soc. Exp. Biol. 40: 59.Google Scholar
  13. Granatek, C. H., Scheinberg, B. M., and Cory, P. M., 1979, Unmasking of fetal determinants on adult bone marrow cells, Nature (London) 281: 484.CrossRefGoogle Scholar
  14. Grimm, E. A., Silver, H. K. B., Roth, J. A., and Morton, D. L., 1976, Detection of tumor-associated antigen in human melanoma cell line supernatants, Int. J. Cancer 17: 559.PubMedCrossRefGoogle Scholar
  15. Gupta, R. K., Irie, R. F., Chee, D. O, and Morton, D. L., 1979, Demonstration of two distinct antigens in spent tissue culture medium of human malignant melanoma cell line, J. Natl. Cancer Inst. 63: 347.PubMedGoogle Scholar
  16. Heiniger, H. J., and Marshall, J. D., 1979, Pinocytosis in L cells: Its dependence on membrane sterol and the cytoskeleton, Cell Biol. Int. Rep. 3: 409.PubMedCrossRefGoogle Scholar
  17. Hickman, S., and Kornfield, S., 1978, Effect of tunicamycin on IgM, IgA, and IgG secretion by mouse plasmacytoma cells, J. Immunol. 121: 990.PubMedGoogle Scholar
  18. Hughes, R. C., Meager, A., and Nair, R., 1977, Effect of 2-deoxy D-glucose on the cell-surface glycoproteins of hamster fibroblasts, Eur. J. Biochem. 72: 265.PubMedCrossRefGoogle Scholar
  19. Imai, K., Ng, A. K., and Ferrone, S., 1981, Characterization of monoclonal antibodies to melanoma-associated antigens, J. Natl. Cancer Inst. 66: 489.PubMedGoogle Scholar
  20. Jerry, L. M., Lewis, M. G., and Ronden, G., 1976, Fetal antigens in non-neoplastic conditions, Cancer Res. 36: 3446.PubMedGoogle Scholar
  21. Keller, P. K., Boon, D. Y., and Crum, F. C., 1979, N-Acetyl glucosamine-l-phosphate transferase from hen oviduct: Solubilization, characterization, and inhibition by tunicamycin, Biochemistry 18: 3946.PubMedCrossRefGoogle Scholar
  22. Krangel, M. S., Orr, H. T., and Strominger, J. L., 1979, Assembly and maturation of HLA-A and HLA-B antigens in vivo, Cell 18: 979.PubMedCrossRefGoogle Scholar
  23. Lever, J. E., 1979, Modulation of glucose uptake in animal cells, J. Biol. Chem. 254: 2961.PubMedGoogle Scholar
  24. McCabe, R. P., Ferrone, S., Pellegrino, M. A., Kern, D. H., Holmes, E. C., and Reisfeld, R. A., 1978, Isolation and immunochemical evaluation of human melanoma-associated antigens, J. Natl. Cancer Inst. 60: 773.PubMedGoogle Scholar
  25. McCabe, R. P., Quaranta, V., Frugis, L., Ferrone, S., and Reisfeld, R. A., 1979a, A radioimmunometric antibody binding assay for the evaluation of xenoantisera to melanoma associated antigens, J. Natl. Cancer Inst. 62: 455.PubMedGoogle Scholar
  26. McCabe, R. P., Galloway, D. R., Ferrone, S., and Reisfeld, R. A., 1979b, Human melanoma associated antigens (MAA): Serological and structural characteristics, in: Current Trends in Tumor Immunology ( S. Ferrone, L. Gorini, R. B. Herberman, and R. A. Reisfeld, eds.), pp. 269–286, Garland STPM Press, New York.Google Scholar
  27. McCabe, R. P., Indiveri, F., Galloway, D. R., Ferrone, S., and Reisfeld, R. A., 1980, Lack of association of serologically detectable human melanoma-associated antigens with /32- microglobulin: Serological and immunochemical evidence, J. Natl. Cancer Inst. 68: 703.Google Scholar
  28. Morgan, A. C., and Reisfeld, R. A., 1982, Biological significance of human melanoma associated antigens defined by xenoantisera, Adv. Immunopathol. (in press).Google Scholar
  29. Morgan, A. C., Galloway, D. R., Imai, K., and Reisfeld, R. A., 1981, Human melanoma-associated antigenic role of carbohydrate in shedding and cell surface expression, J. Immunol. 126: 365.PubMedGoogle Scholar
  30. Morgan, A. C., Galloway, D. R., Jensen, F. C., Giovanella, B. C., and Reisfeld, R. A., 1981a, Immunochemical delineation of an oncofetal antigen on cultured human fetal melanocytes, Proc. Natl. Acad. Sci. U.S.A. 78: 3834.PubMedCrossRefGoogle Scholar
  31. Nakamura, K., and Compani, R. W., 1978, Effects of glucosamine, 2-deoxyglucose and tunicamycin on glycosylation, sulfation, and assembly of influenza viral proteins, Virology 84: 303.PubMedCrossRefGoogle Scholar
  32. Olden, K., Pratt, R. M., and Yamada, K. M., 1978, Role of carbohydrates in protein secretion and turnover: Effects of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts, Cell 13: 461.PubMedCrossRefGoogle Scholar
  33. Olden, K., Pratt, R. M., Jaworski, C., and Yamada, K. M., 1979, Evidence for role of glycoprotein carbohydrates in membrane transport: Specific inhibition by tunicamycin, Proc. Natl. Acad. Sci. U.S.A. 76: 791.PubMedCrossRefGoogle Scholar
  34. Pouyssegur, J. M., and Pastan, I., 1977, Mutants of mouse fibroblasts altered in the synthesis of cell surface glycoproteins, J. Biol. Chem. 252: 1639.PubMedGoogle Scholar
  35. Rampa. A. L., Pinkofsky, H. B., and Jung, C. Y., 1980, Structure of cytochalasins and cytochalasin B binding sites in human erythrocyte membranes, Biochemistry 19: 679.CrossRefGoogle Scholar
  36. Reisfeld, R. A., Pellegrino, M. A., and Kahan, B. D., 1971, Salt extraction of soluble HLA antigens, Science 172: 1134.PubMedCrossRefGoogle Scholar
  37. Stuhlmiller, G. M., Green, R. W., and Seigler, H. F., 1978, Solubilization and partial isolation of human melanoma tumor-associated antigens, J. Natl. Cancer Inst. 61: 61.PubMedGoogle Scholar
  38. Tannenbaum, J., Tannenbaum, S. W., and Godman, G. C., 1977, The binding sites of cytochalasin D. II. Their relationship to hexose transport and to cytochalasin B, J. Cell Physiol. 91: 239.PubMedCrossRefGoogle Scholar
  39. Tkacz, J. S., and Lampen, J. O., 1975, Tunicamycin inhibition of polyisoprenyl-N-acetylglucosaminyl pyrophosphate formation in calf liver microsomes, Biochem. Biophys. Res. Commun. 65: 248.PubMedCrossRefGoogle Scholar
  40. Waechter, C. J., and Lennarz, W. J., 1976, The role of polyprenol-linked sugars in glycoprotein synthesis, Annu. Rev. Biochem. 45: 95.PubMedCrossRefGoogle Scholar
  41. Wessels, N. K., Spooner, B. S., and Ash, J. F., 1971, Microfilaments in cellular and developmental processes: Contractile microfilament machinery of many types is reversibly inhibited by cytochalasin B, Science 171: 135.CrossRefGoogle Scholar
  42. Woodbury, R. C., Brown, J. P., Yeh, M. Y., Hellström, I., and Hellström, K. E., 1980, Identification of a cell surface protein, p 97, in human melanomas and certain other neoplasma, Proc. Natl. Acad. Sci. U.S.A. 77: 2183.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. A. Reisfeld
    • 1
  • D. R. Galloway
    • 1
  • R. P. McCabe
    • 1
  • Alton C. MorganJr.
    • 1
  1. 1.Department of Molecular ImmunologyScripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations