The Timing of Hormone Signals in the Orchestration of Brain Development

  • Paola S. Timiras
Part of the Topics in Developmental Psychobiology book series (TDP)


During development, the entire organism as well as specific organs and systems, including the central nervous system (CNS), undergo so-called critical periods characterized by accelerated growth and differentiation and by great susceptibility to environmental stimuli. Among such stimuli, hormones have been shown to play roles, both organizational (i.e., to direct cell differentiation) and regulatory (i.e., to influence the rate of growth and metabolism in mammals). The most important developmental effects of major hormones are presented in Table I.


Thyroid Hormone Brain Development Critical Period Thyroid Hormone Receptor Limbic Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, W. W., & Ojeda, S. R.: On the feedback actions of estrogens on gonadotropin and prolactin release in infantile female rats. Endocrinology, 1977, 101, 1517–1523.PubMedCrossRefGoogle Scholar
  2. Child, C. M.: Patterns and problems of development. Chicago: University of Chicago Press, 1941.CrossRefGoogle Scholar
  3. Dalal, K. B., Valcana, T., Timiras, P. S., & Einstein, E. R.: Regulatory role of thyroxine on myelinogenesis in the developing rat. Neurobiology, 1971, 1, 211–224.Google Scholar
  4. Davenport, J. W.: Environmental therapy in hypothyroid and other disadvantaged animal populations. In R. N. Walsh & W. T. Greenough (Eds.), Environments as therapy for brain dysfunction. New York: Plenum Press, 1976.Google Scholar
  5. Dobbing, J.: Prenatal nutrition and neurological development. In N. A. Buchwald & M. A. B. Brazier (Eds.), Brain mechanisms in mental retardation. New York: Academic Press, 1975.Google Scholar
  6. Darner, G., & Staudt, J.: Structural changes in the hypothalamic ventromedial nucleus of the male rat, following neonatal castration and androgen treatment. Neuroendocrinology, 1969, 4, 278–281.CrossRefGoogle Scholar
  7. Drayes, D. J., & Timiras, P. S.: Thyroid hormone effects in neural (tumor) cell culture: Differential effects on triiodothyronine nuclear receptors, Na, K. ATPase activity and intracellular electrolyte levels. In E. Giacobini, A. Vernadakis, & A. Shahar (Eds.), Tissue culture in neurobiology. New York: Raven Press, 1980.Google Scholar
  8. Dussault, J. H., & Labrie, F.: Development of the hypothalamic-pituitary-thyroid axis in the neonatal rat. Endocrinology, 1975, 97, 1321–1324.PubMedCrossRefGoogle Scholar
  9. Eberhardt, N. L., Valcana, T., & Timiras, P. S.: Hormone-receptor interactions in brain: Uptake and binding of thyroid hormone. Psychoneuroendocrinology, 1976, 1, 399–409.CrossRefGoogle Scholar
  10. Eberhardt, N. L., Valcana, T., & Timiras, P. S.: Triiodothyronine nudear receptors: An in vitro comparison of the binding of triiodothyronine nuclei of adult rat liver, cerebral hemisphere and anterior pituitary. Endocrinology, 1978, 102, 556–561.PubMedCrossRefGoogle Scholar
  11. Everitt, A. V.: The neuroendocrine system and aging. Gerontology, 1980, 26, 108–119.PubMedCrossRefGoogle Scholar
  12. Geel, S. E.: Development-related changes of triiodothyronine binding to brain cystosol receptors. Nature, 1977, 269, 428–430.Google Scholar
  13. Geel, S. E., Gonzales, L., & Timiras, P. S.: Properties of triiodothyronine binding sites in cerebral cortical cytosol. Endocrine Research Communications, 1981, 8, 1–18.PubMedCrossRefGoogle Scholar
  14. Geel, S. E., & Timiras, P. S.: The influence of neonatal hypothyroidism and of thyroxine on the ribonucleic acid and deoxyribonucleic acid concentrations of rat cerebral cortex. Brain Research, 1967a, 4, 135–142.Google Scholar
  15. Geel, S. E., & Timiras, P. S.: Influence of neonatal hypothyroidism and of thyroxine on acetylcholinesterase and cholinesterase activities in the developing central nervous system of the rat. Endocrinology, 1967b, 80, 1069–1074.CrossRefGoogle Scholar
  16. Geel, S. E., & Timiras, P. S.: The role of hormones in cerebral protein metabolism. In A. Lajtha (Ed.), Protein metabolism of the nervous system. New York: Plenum Press, 1970.Google Scholar
  17. Geel, S. E., Valcana, T. & Timiras, P. S.: Effect of neonatal hypothyroidism and of thyroxine on L(14C-)lysine incorporation in protein in vivo and the relationship to ionic levels in the developing brain of the rat. Brain Research, 1967, 4, 143–150.PubMedCrossRefGoogle Scholar
  18. Gorski, R. A., & Barraclough, A.: Effects of low dosages of androgen on the differentiation of hypothalamic regulatory control of ovulation in the rat. Endocrinology, 1963, 73, 210–216.PubMedCrossRefGoogle Scholar
  19. Goy, R. W.: Organizing effects of androgen on the behavior of rhesus monkeys. In R. P. Michael (Ed.), Endocrinology and human behavior. England: Oxford Press, 1968.Google Scholar
  20. Goy, R. W.: Early hormonal influence on the development of sexual and sex-related behavior. In G. C. Quarton, T. Melanchuk, & F. O. Schmitt (Eds.), Neuro-sciences: A study program. New York: Rockefeller University Press, 1970.Google Scholar
  21. Grave, G. D. (Ed.), Thyroid hormones and brain development. New York: Raven Press, 1977.Google Scholar
  22. Hamburger, V.: Emergence of nervous coordination. In M. Locke (Ed.), The emergence of order in developing systems. Developmental biology supplement (Vol. 2 ). New York: Academic Press, 1968.Google Scholar
  23. Harlan, R. E., Gordon, J. H., & Gorski, R. A.: Sexual differentiation of the brain: Implications for neuroscience. In D. M. Schneider (Ed.), Reviews of neuroscience (Vol. 4 ). New York: Raven Press, 1979.Google Scholar
  24. Harris, G. W.: Electrical stimulation of the hypothalamus and the mechanism of neural control of the adenohyophysis. Journal of Physiology (London), 1948, 107, 418–429.Google Scholar
  25. Harris, G. W.: Sex hormones, brain development and brain function. Endocrinology, 1964, 75, 627–648.PubMedCrossRefGoogle Scholar
  26. Jost, A.: Problems of fetal endocrinology: The gonadal and hypophyseal hormones. Recent Progress in Hormone Research, 1953, 8, 379–418.Google Scholar
  27. Kawakami, M., & Sawyer, C. H.: Neuroendocrine correlates of changes in brain activity thresholds by sex steroids and pituitary hormones. Endocrinology, 1959, 65, 652–668.PubMedCrossRefGoogle Scholar
  28. Legrand, J.: Comparative effects of thyroid deficiency and undernutrition on maturation of the nervous system and particularly on myelination in the young rat. In M. Hamburgh & E. J. W. Barrington (Eds.), Hormones in development. New York: Appleton-Century-Croft, 1971.Google Scholar
  29. Levine, S. (Ed.), Hormones and behavior. New York: Academic Press, 1972.Google Scholar
  30. Lorenz, K.: Der Kumpan in der Umwelt des Vogels. Journal für Ornithologie, 1935, 83, 137–213.CrossRefGoogle Scholar
  31. Martin, L.: Role of the metabolism of steriod hormones on the brain in sex differentiation and sexual maturation. In G. Dörner & M. Kawakami (Eds.), Hormones and brain development. Amsterdam: Elsevier/North-Holland Biomedical Press, 1978.Google Scholar
  32. McEwen, B. S.: Steroid hormone interactions with the brain: Cellular and molecular aspects. In D. M. Schneider (Ed.), Reviews of neuroscience (Vol. 4 ). New York: Raven Press, 1979.Google Scholar
  33. Naftolin, F.: Metabolism of steroids in the brain. In V. H. T. James (Ed.), Endocrinology. Amsterdam-Oxford: Excerpta Medica, 1977.Google Scholar
  34. Naidoo, S., Valcana, T., & Timiras, P. S.: Thyroid hormone receptors in the developing rat brain. American Zoologist, 1978, 18, 522–545.Google Scholar
  35. Pearson, D. E., Teicher, M. H., Shaywitz, B. A., Cohen, D. J., Young, J. G., & Anderson, G. M.: Environmental influences on body weight and behavior in developing rats after neonatal 6hydroxydopamine. Science, 1980, 209, 715–717.PubMedCrossRefGoogle Scholar
  36. Pfeiffer, C. A.: Sexual differences of the hypophysis and their determination by the gonads. American Journal of Anatomy, 1936, 58, 195–226.CrossRefGoogle Scholar
  37. Phoenix, C. H., Goy, R. W., Gerall, A. A., & Young, W. C.: Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology, 1959, 65, 369–382.PubMedCrossRefGoogle Scholar
  38. Phoenix, C. H., Goy, R. W., & Resko, J. A.: Psychosexual differentiation as a function of androgenic stimulation. In M. Diamond (Ed.), Perspectives in reproduction and sexual behavior. Bloomington, Ind.: Indiana University Press, 1968.Google Scholar
  39. Reinisch, J. M.: Fetal hormones, the brain and human sex differences: A heuristic, integrative review of the recent literature. Archives of Sexual Behavior, 1974, 3, 51–90.PubMedCrossRefGoogle Scholar
  40. Sawyer, C. H., & Gorski, R. A. (Eds.), Steroid hormones and brain function. Berkeley: University of California Press, 1971.Google Scholar
  41. Scott, J. P.: Early experience and organization of behavior. Belmont, Calif.: Brooks/Cole, 1968.Google Scholar
  42. Shapiro, B. H., Levine, D. C., & Adler, N. T.: The testicular feminized rat: A naturally occurring model of androgen independent brain masculinization. Science, 1980, 209, 418–420.PubMedCrossRefGoogle Scholar
  43. Skochko, S., & Timiras, P. S.: Effects of anesthetics on mitochondrial membrane fluidity in normal and hypothyroid myocardium. Federation Proceedings, 1980, 39, 719.Google Scholar
  44. Spemann, H.: Embryonic development and induction. New Haven: Yale University Press, 1938.Google Scholar
  45. Sterling, K., Lazarus, J. H., Milch, P. O., Sakurada, T., & Brenner, M. A.: Mitochondrial thyroid hormone receptor: Localization and physiological significance. Science, 1978, 201, 1126.PubMedCrossRefGoogle Scholar
  46. Stockard, C. R.: Developmental rate and structural expression: An experimental study of twins, “double” monsters and single deformities, and the interaction among embryonic organs during their origin and development. American Journal of Anatomy, 1921, 28, 115–277.CrossRefGoogle Scholar
  47. Terasawa, E., & Timiras, P. S.: Electrical activity during the estrous cycle of the rat: Cyclic changes in limbic structures. Endocrinology, 1968a, 83, 207–216.PubMedCrossRefGoogle Scholar
  48. Terasawa, E., & Timiras, P. S.: Electrophysiological study of the limbic system in the rat at onset of puberty. American Journal of Physiology, 1968b, 215, 1462 - 1467. Google Scholar
  49. Terasawa, E., & Timiras, P. S.: Cyclic changes in electrical activity of the rat midbrain reticular formation during the estrous cycle. Brain Research, 1969, 14, 189–198.PubMedCrossRefGoogle Scholar
  50. Timiras, P. S.: Estrogens as organizers of CNS function. In D. H. Ford (Ed.), Influence of hormones on the nervous system. Basel: S. Karger, 1971.Google Scholar
  51. Timiras, P. S.: Developmental physiology and aging. New York: Macmillan, 1972.Google Scholar
  52. Timiras, P. S.: Biological perspectives on aging: In search of a masterplan. American Scientist, 1978, 66, 605–613.PubMedGoogle Scholar
  53. Tse, J., Wrenn, R. W., & Kuo, J. F.: Thyroxine-induced changes in characteristics of ß-adrenergic receptors and adenosine 3’, 5’- monophosphate and guanosine 3’, 5’- monophosphate systems in the heart may be related to reputed catecholamine supersensitivity in hyperthyroidism. Endocrinology, 1980, 107, 6–16.PubMedCrossRefGoogle Scholar
  54. Vaccari, A., Brotman, S., Cimino, J., & Timiras, P. S.: Sex differences of neurotransmitter enzymes in central and peripheral nervous systems. Brain Research, 1977, 132, 176–185.PubMedCrossRefGoogle Scholar
  55. Vaccari, A., & Timiras, P. S.: Alterations in brain dopaminergic receptors in developing hypo-and hyperthyroid rats. Neurochemistry International, 1981, 3, 149–153.PubMedCrossRefGoogle Scholar
  56. Vaccari, A., Valcana, T., & Timiras, P. S.: Effects of hypothyroidism on the enzymes for biogenic amines in the developing rat brain. Pharmacological Research Communications, 1977, 9, 763–780.PubMedCrossRefGoogle Scholar
  57. Valcana, T.: The role of triiodothyronine (T3) receptors in brain development. In E. Meisami & M. A. B. Brazier (Eds.), Neural growth and differentiation. New York: Raven Press, 1979.Google Scholar
  58. Valcana, T., Einstein, E. R., Csdjtey, J., Dalal, K. B., & Timiras, P. S.: Influence of thyroid hormones on myelin proteins in the developing rat brain. Journal of the Neurological Sciences, 1975, 25, 19 27.Google Scholar
  59. Valcana, T., & Timiras, P. S.: Effect of hypothyroidism on ionic metabolism and Na’K’ activated ATP phosphohydrolase activity in the developing rat brain. Journal of Neurochemistry, 1969, 16, 935–943.PubMedCrossRefGoogle Scholar
  60. Valcana, T., & Timiras, P. S.: Nuclear triiodothyronine receptors in the developing rat brain. Molecular and Cellular Endocrinology, 1978, 2, 31–41.CrossRefGoogle Scholar
  61. Valcana, T., & Timiras, P. S.: Changes in rat liver nuclear triiodothyronine receptors with age and thyroid activity. In L. Macho, & V. Strbak (Eds.), Hormones and development. Bratislava: VEDA, 1979.Google Scholar
  62. Walker, R. F., & Timiras, P. S.: Serotonin in development of cyclic reproductive function. In B. Haber, S. Gabay, M. R. Issidorides, & S. G. A. Alivisatos (Eds.), Serotonin: Current aspects of neurochemistry and function. Advances in experimental biology and medicine (Vol. 133 ). New York: Plenum Press, 1981.Google Scholar
  63. Walker, R. F., & Timiras, P. S.: Pacemaker insufficiency and the onset of aging. In D. Carpenter (Ed.), Cellular pacemakers II. New York: Wiley. 1982.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Paola S. Timiras
    • 1
  1. 1.Department of Physiology—AnatomyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations