Behavioural Effects of Pituitary Hormones

  • Victor M. Wiegant
  • David de Wied


Hormones secreted by the pituitary play an important role in maintaining homeostasis for the organism. Observations by Selye (1950) on the ‘general adaptation syndrome’ implicated pituitary-adrenal-system hormones as functional principles in adaptational processes. Little attention has been paid to the relation of hormonal effects on behaviour and the functioning of central nervous structures. For, from a classic-endocrinological point of view, the brain was not recognized as a target organ for these hormones. The study of impaired learning behaviour of animals after removal of the pituitary (de Wied, 1969), however, clearly indicated that hypophyseal principles are involved in a number of brain functions and that they are important for the maintenance of normal behavioural patterns. Impaired behaviour, as mentioned above, was readily restored by the substitution of ACTH or α-MSH, but also by treatment with fragments of these peptide hormones that lack the classic endocrine activity of the parent hormone. Also, in intact animals it was found that learning and memory processes can be modulated by peptides related to ACTH or β-LPH (de Wied, 1969; de Wied et al., 1978a). Based on such observations, it was postulated that the pituitary manufactures peptides that are released upon adequate stimulation and influence processes of learning, memory and motivation by direct action on the central nervous system (de Wied, 1969). Indeed, ACTH, α-MSH, β-LPH and fragments of this hormone, the endorphins, have been found not only in the pituitary, but in many brain structures as well (Krieger et al., 1977; Orwall et al., 1979; Rossier et al., 1977). Recently, it has been suggested that specific enzyme systems present in pituitary and brain generate bioactive peptides from inactive precursor molecules (Walter et al., 1973; Austen et al., 1977; Burbach et al., 1979). In this way, β-endorphin (β-LPH61–91), a peptide with opiate-like properties, can be generated from the nonopiate-like hormone β-LPH (Gráf et al., 1976; Bradbury et al., 1976b). β-Endorphin, in turn, may serve as precursor for a series of shorter sequences with a variety of behavioural activities. For, in the presence of brain membranes, β-endorphin can be metabolized to α-endorphin, [des-tyrl] -α-endorphin, γ-endorphin and [des-tyr1] -γ-endorphin (Burbach et al., 1979, 1980). Likewise, ACTH may function as a precursor molecule for smaller peptides with differential activities (de Wied, 1974). Interestingly, it has been demonstrated that ACTH, β-LPH and possibly still other peptides are derived from the same large precursor molecule (Mains et al., 1977; Peng Loh, 1979). In addition, immunohistochemical studies revealed a widespread and diffuse neuronal system in the central nervous system, containing ß-LPH, β-endorphin and ACTH- immunoreactivity (see Watson et al., 1978a; Watson and Akil, 1980). Thus, on environmental stimulation, peptides with different intrinsic activities may be released from pituitary or central cells and modulate the activity of neuronal systems in the brain. This altered activity finally results in behavioural adaptation of the organism to the environmental stimulus.


Behavioural Effect Avoidance Behaviour Avoidance Response Pituitary Hormone Excessive Grooming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akil, H., Hewlet, WA., Barchas, J.D. and Li, C.H. (1980). Eur. J. Pharmacol., 60 (in press)Google Scholar
  2. Applezweig, M.H. and Baudry, F.D. (1955). Psychol. Rep., 1, 417Google Scholar
  3. Applezweig, M.H. and Moeller, G. (1959). Acta Psychol., 15, 602Google Scholar
  4. Austen, B.M., Smyth, D.G. and Snell, C.R. (1977). Nature 269, 619PubMedGoogle Scholar
  5. Barbeau, A. (1978). Adv. Exp. Med. Biol., 113, 101PubMedGoogle Scholar
  6. Beatty, D.A., Beatty, W.A., Bowman, R.E. and Gilchrist, J.C. (1970). Physiol. Behay., 5, 939Google Scholar
  7. Bloom, F., Segal, D., Ling, N. and Guillemin, R. (1976). Science 194, 630PubMedGoogle Scholar
  8. Bohus, B. and de Wied, D. (1966). Science 153, 318PubMedGoogle Scholar
  9. Bohus, B. and de Wied, D. (1980). In General, Comparative and Clinical Endocrinology of the Adrenal Cortex, vol. 3, ed. I. Chester Jones and I.W. Henderson ( Academic Press, London ) p. 256Google Scholar
  10. Bohus, B., Gispen, W.H. and de Wied, D. (1973). Neuroendocrinology II,137Google Scholar
  11. Bohus, B., Hendrickx, H.H.L., van Kolfschoten, A.A. and Krediet, T.G. (1975). In Sexual Behavior: Pharmacology and Biochemistry, ed. M. Sandler and G.L. Gessa ( Raven Press, New York ) p. 269Google Scholar
  12. Bradbury, A.F., Feldberg, W.F., Smyth, D.G. and Snell, C.R. (1976a). In Opiates and Endogenous Opioid Peptides, ed H.W. Kosterlitz ( North Holland, Amsterdam ) p. 9Google Scholar
  13. Bradbury, A.F., Smyth, D.G. and Snell, C.R. (1976b). Biochem. Biophys. Res. Comm., 69, 950PubMedGoogle Scholar
  14. Bradbury, A.F., Smyth, D.G., Snell, C.R., Birdsall, N.J.M. and Hulme, E.C. (1976c). Nature 260, 793Google Scholar
  15. Burbach, J.P.H., Loeber, J.G., Verhoef, J., de Kloet, E.R. and de Wied, D. (1979). Biochem. Biophys. Res. Comm., 86, 1296PubMedGoogle Scholar
  16. Burbach, J.P.H., Loeber, J.G., Verhoef, J., Wiegant, V.M., de Kloet, E.R. and de Wied, D. (1980). Nature 283, 96PubMedGoogle Scholar
  17. Burkard, W.P. and Gey, K.F. (1968). Helv. Physiol. Pharmacol. Acta 26, 197Google Scholar
  18. Christensen, C.W., Harston, C.T., Kastin, A.J., Kostrzewa, R.M. and Spirtes, M.A. (1976). Pharmacol. Biochem. Behay., 5 (suppl. 1), 117Google Scholar
  19. Colbern, D.L., Isaacson, R.L., Bohus, B. and Gispen, W.H. (1977). Life Sci., 21, 393PubMedGoogle Scholar
  20. Cools, A.R., Wiegant, V.M. and Gispen, W.H. (1978). Eur. J. Pharmacol., 50, 265PubMedGoogle Scholar
  21. Courvoisier, S., Fournel, J., Ducrot, R., Kolsky, M. and Koetschet, P. (1952). Arch. Int. Pharmacodyn. Ther., 92, 305Google Scholar
  22. Dunn, A.J. and Gispen, W.H. (1977). Biobehay. Rev., 1, 15Google Scholar
  23. Eberle, A. and Schwyzer, R. (1975). Helv. Chim. Acta 58, 1528PubMedGoogle Scholar
  24. Ferrari, W., Gessa, G.L. and Vargiu, L. (1963). Ann. N.Y. Acad. Sci., 104, 330PubMedGoogle Scholar
  25. Flexner, J.B. and Flexner, L.B. (1971). Proc. Nat. Acad. Sci., 68, 2519PubMedGoogle Scholar
  26. Flood, J.F., Jarvik, M.E., Bennett, E.L. and Orme, A.E. (1976). Pharmacol. Biochem. Behay. 5 (suppl. 1), 41Google Scholar
  27. Forn, J. and Krishna, G. (1971). Pharmacology 5, 193PubMedGoogle Scholar
  28. Frederickson, R.C.A. (1977). Life Sci., 21, 23PubMedGoogle Scholar
  29. Garrud, P., Gray, J.A. and de Wied, D. (1974). Physiol. Behay., 12, 109Google Scholar
  30. Gessa, G.L., Pisano, M., Vargiu, L., Crabai, F. and Ferrari, W. (1967). Rev. Can. Biol., 26, 229PubMedGoogle Scholar
  31. Gispen, W.H. and Wiegant, V.M. (1976). Neurosci. Lett., 2, 159PubMedGoogle Scholar
  32. Gispen, W.H., Wiegant, V.M., Greven, H.M. and de Wied, D. (1975). Life Sci., 17, 645PubMedGoogle Scholar
  33. Gispen, W.H., Buitelaar, J., Wiegant, V.M., Terenius, L. and de Wied, D. (1976a). Eur. J. Pharmacol., 39, 393PubMedGoogle Scholar
  34. Gispen, W.H., Wiegant, V.M., Bradbury, A.F., Hulme, E.C., Smyth, D.G., Snell, C.R. and de Wied, D. (1976b). Nature 264, 794PubMedGoogle Scholar
  35. Gispen, W.H., Ormond, D., Tenhaaf, J. and de Wied, D. (1980). Eur. J. Pharmacol., 65 (in press)Google Scholar
  36. Gold, P.E. and van Buskirk, R. (1976). Behay. Biol., 16, 387Google Scholar
  37. Grâf, L., Ronai, A.Z., Bajusz, S., Cseh, G. and Szekely, J.I. (1976). FEBS Lett., 64, 181PubMedGoogle Scholar
  38. Gray, J.A. (1971). Nature 229, 52PubMedGoogle Scholar
  39. Greengard, P. (1976). Nature 260, 101PubMedGoogle Scholar
  40. Greven, H.M. and de Wied, D. (1973). Progr. Brain Res., 39, 429Google Scholar
  41. Greven, H.M. and De Wied, D. (1977). In Frontiers of Hormone Research, Vol.4,Melanocvte Stimulating Hormone: Control, Chemistry and Effects, ed. F.J.H. Tilders, D.F. Swaab and T j.B. van Wimersma Greidanus (S. Karger, Basel ) p. 140Google Scholar
  42. Guillemin, R., Ling, N. and Burgus, R. (1976). C.R. Acad. Sci. Paris Ser. D 282, 783Google Scholar
  43. Heald, P.J. (1962). Nature 193, 451PubMedGoogle Scholar
  44. Hughes, J., Smith, T.W., Kosterlitz, H.W., Fothergill, I.A., Morgan, B.A. and Morris, H.R. (1975). Nature 258, 577PubMedGoogle Scholar
  45. Isaacson, R.L., Dunn, A.J., Rees, HD. and Waldock, B. (1976). Physiol. Psychol., 4, 159Google Scholar
  46. Izumi, K., Donaldson, J. and Barbeau, A. (1973). Life Sci., 12, 203Google Scholar
  47. Jacquet, Y.F. and Marks, N. (1976). Science 194, 632PubMedGoogle Scholar
  48. Jolles, J., Wiegant, V.M. and Gispen, W.H. (1978). Neurosci. Lett., 9, 261PubMedGoogle Scholar
  49. Jolies, J., Zwiers, H., Schotman, P. and Gispen, W.H. (1980). In Synaptic Constituents in Health and Disease,ed. M. Brzin, D. Sket and M. Bachelard (Pergamon Press, London, in press)Google Scholar
  50. Kastin, A.J., Miller, L.H., Nockton, R., Sandman, C.A., Schally, A.V. and Stratton, L.O. (1973). Progr. Brain Res., 39, 461Google Scholar
  51. Kelsey, J.E. (1975). J. Comp. Physiol. Psychol., 88, 271Google Scholar
  52. Kovâcs, G.L. and de Wied, D. (1978). Eur. J. Pharmacol., 53, 103PubMedGoogle Scholar
  53. Krieger, D.T., Liotta, A. and Brownstein, M.J. (1977). Proc. Nat. Acad. Sci. (Wash.) 74, 648Google Scholar
  54. Lande, S., de Wied, D. and Witter, A. (1973). Progr. Brain Res., 39, 421Google Scholar
  55. Leonard, B.E. (1969), Int. J. Neuropharmacol., 8, 427PubMedGoogle Scholar
  56. Levine, S. and Jones, L.E. (1965). J. Comp. Physiol. Psychol., 59, 357PubMedGoogle Scholar
  57. Lissâk, K. and Bohus, B. (1972). Int. J. Psychobiol., 2, 103Google Scholar
  58. Mains, R.E., Eipper, B.A. and Ling, N. (1977). Proc. Nat. Acad. Sci. USA 74, 3014PubMedGoogle Scholar
  59. Mezey, E.M., Kivovics, P. and Palkovits, M. (1979). Trends Neurosci., 2, 57Google Scholar
  60. Michell, R.H. (1975). Biochem, Biophys. Acta 415, 81Google Scholar
  61. Miller, R.E. and Ogawa, N. (1962). J. Comp. Physiol. Psychol., 55, 211PubMedGoogle Scholar
  62. Murphy, J.V. and Miller, R.E. (1955). J. Comp. Physiol. Psychol., 48, 47PubMedGoogle Scholar
  63. Orwall, E., Kendall, J.W., Lamorena, L. and McGievra, R. (1979). Endocrinology 104, 1845Google Scholar
  64. Pearse, A.G.E. (1969). J. Histochem. Cytochem., 17, 303PubMedGoogle Scholar
  65. Pelletier, G. (1979). J. Histochem. Cytochem., 27, 1046PubMedGoogle Scholar
  66. Pelletier, G. and Leclerc, R. (1979). Endocrinology 104, 1426PubMedGoogle Scholar
  67. Peng Loh, Y. (1979). Proc. Nat. Acad. Sci. (USA) 76, 796Google Scholar
  68. Pert, C.B., Pert, A., Chang, J-k. and Fong, B.T.W. (1976). Science 194, 330PubMedGoogle Scholar
  69. Rapoport, Si, Klee, W.A., Pettigrew, K.D. and Ohno, K. (1980). Science 207, 84PubMedGoogle Scholar
  70. Rasmussen, H., Jensen, P., Lake, W., Friedmann, N. and Goodman, D.B.P. (1975). Adv. Cyclic Nucl. Res., 5, 375Google Scholar
  71. van Ree, J.M., Verhoeven, W.M.A., van Praag, H.M. and de Wied, D. (1978). In Characteristics and Function of Opioids, ed. J.M. van Ree and L. Terenius ( Elsevier, Amsterdam ) p. 181Google Scholar
  72. Rigter, H. and van Riezen, H. (1975). Physiol. Behay., 14, 563Google Scholar
  73. Rigter, H. and Popping, A. (1976). Psychopharmacology 46, 255Google Scholar
  74. Rigter, H., van Riezen, H. and de Wied, D. (1974). Physiol. Behay., 13, 381Google Scholar
  75. Rossier, J., Vargo, T.M., Minick, S., Ling, N., Bloom, F.E. and Guillemin, R. (1977). Proc. Nat. Acad. Sci. (Wash.) 74, 5162Google Scholar
  76. Rubin, C.S. and Rosen, O.M. (1975). Ann. Rev. Biochem., 44, 831PubMedGoogle Scholar
  77. Rudman, D. (1976). Neuroendocrinology 20, 235PubMedGoogle Scholar
  78. Rudman, D. (1978). Endocrinology 103, 1556PubMedGoogle Scholar
  79. Rudman, D. and Isaacs, J.W. (1975). Endocrinology 97, 1476PubMedGoogle Scholar
  80. Sandman, C.A., Kastin, A.J. and Schally, A.V. (1969). Experientia (Basel) 25, 1001Google Scholar
  81. Segal, D.S., Browne, R.G., Bloom, F., Ling, N. and Guillemin, R. (1977). Science 198, 411PubMedGoogle Scholar
  82. Selye, H. (1950). The Physiology and Pathology of Exposure to Stress (Acta Med., Montreal)Google Scholar
  83. Sofroniew, M.V. (1979). Am. J. Anat., 154, 283PubMedGoogle Scholar
  84. Spirtes, M.A., Christensen, C.W., Hartson, C.T. and Kastin, A.J. (1978). Brain Res., 144, 189PubMedGoogle Scholar
  85. Sutherland, E.W. and Robison, G.A. (1966). Pharmacol. Rev., 18, 145PubMedGoogle Scholar
  86. Terenius, L. (1975). J. Pharm. Pharmacol., 27, 450PubMedGoogle Scholar
  87. Terenius, L., Gispen, W.H. and de Wied, D. (1975). Eur. J. Pharmacol., 33, 395PubMedGoogle Scholar
  88. Verhoef, J., Witter, A. and de Wied, D. (1977). Brain Res., 131, 117PubMedGoogle Scholar
  89. Verhoeven, W.A., van Praag, H.M., Botter, P.A., Sunier, A., van Ree, J.M. and de Wied, D. (1978). The Lancet 1, 1046Google Scholar
  90. Verhoeven, W.M.A., van Praag, H.M., van Ree, J.M. and de Wied, D. (1979). Arch. Gen. Psychiat., 36, 294PubMedGoogle Scholar
  91. Versteeg, D.H.G. (1980). Pharmacol. Ther.,(in press)Google Scholar
  92. Von Hungen, K. and Roberts, S. (1973). Eur. J. Biochem., 36, 391Google Scholar
  93. Walter, R., Griffiths, E.C. and Hooper, K.C. (1973). Brain Res., 60, 449PubMedGoogle Scholar
  94. Watson, S.J. and Akil. H. (1980). Brain Res., 82, 217Google Scholar
  95. Watson, S.J., Richard, C.W. III and Barchas, J.D. (1978a). Science 200, 1180PubMedGoogle Scholar
  96. Watson, S.J., Akil, H., Richard, C.W., III and Barchas, J.D. (1978b). Nature 275, 226PubMedGoogle Scholar
  97. de Wied, D. (1964). Amer. J. Physiol., 207, 255Google Scholar
  98. de Wied, D. (1965), Int. J. Neuropharmacol., 4, 157Google Scholar
  99. de Wied, D. (1966). Proc. Soc. Exp. Biol. Med., 122, 28PubMedGoogle Scholar
  100. de Wied, D. (1967). Excerpta Med. Int. Congr. Serv., 132, 945Google Scholar
  101. de Wied, D. (1969). In Frontiers in Neuroendocrinology, ed. W.F. Ganong and L. Martini ( Oxford University Press, New York ) p. 97Google Scholar
  102. de Wied, D. (1971). In Normal and Abnormal Development of Brain and Behavior, ed. G.B.A. Stoelinga and J.J. van der Werff ten Bosch ( Leiden University Press, Leiden ) p. 315Google Scholar
  103. de Wied, D. (1974). In The Neurosciences: Third Study Program, ed. F.O. Schmitt and F.G. Worden ( MIT Press, Cambridge, Mass. ) p. 653Google Scholar
  104. de Wied, D. (1979). In Central Regulation of the Endocrine System, ed. K. Fuxe, T. Hökfelt and R. Luft ( Plenum Press, New York ) p. 297Google Scholar
  105. de Wied, D., Witter, A. and Greven, H.M. (1975). Biochem. Pharmacol., 24, 1463PubMedGoogle Scholar
  106. de Wied, D., Bohus, B., van Ree, J.M. and Urban, I. (1978a). J. Pharmacol. Exp. Ther., 204, 570PubMedGoogle Scholar
  107. de Wied, D., Kovacs, G.L., Bohus, B., van Ree, J.M. and Greven, H.M. (1978b). Eur. J. Pharmacol., 49, 427PubMedGoogle Scholar
  108. Wiegant, V.M. and Gispen, W.H. (1975). Exp. Brain Res., 23 (suppl) 219Google Scholar
  109. Wiegant, V.M. and Gispen, W.H. (1977). Behay. Biol., 19, 554Google Scholar
  110. Wiegant, V.M., Cools, A.R. and Gispen, W.H. (1977). Eur. J. Pharmacol., 41, 343PubMedGoogle Scholar
  111. Wiegant, V.M., Jolies, J. and Gispen, W.H. (1978a). In Characteristics and Function of Opioids, ed. J.M. van Ree and L. Terenius ( Elsevier, Amsterdam ) p. 447Google Scholar
  112. Wiegant, V.M., Colbern, D., van Wimersma Greidanus, Tj.B. and Gispen, W.H. (1978b). Brain Res. Bull., 3, 167PubMedGoogle Scholar
  113. Wiegant, V.M., Dunn, A.J., Schotman, P. and Gispen, W.H. (1979). Brain Res., 168, 565PubMedGoogle Scholar
  114. Williams, M. and Rodnight, R. (1977). Progr. Neurobiol., 8, 183Google Scholar
  115. van Wimersma Greidanus, Tj. B., Croiset, G. and Schuiling, G.A. (1979). Brain Res. Bull., 4, 625PubMedGoogle Scholar
  116. Winter, C.A. and Flataker, L. (1951). J. Pharmacol. Exp. Ther., 101, 93Google Scholar
  117. Witter, A. (1979). In Proceedings of the Colloquium on Receptors, Neurotransmitters and Peptide Hormones, Capri, May 1979,ed. M. Kuhar, L. Enna and G.C. Pepeu (Raven Press, New York, in press)Google Scholar
  118. Witter, A., Greven, H.M. and de Wied, D. (1975). J. Pharmacol. Exp. Ther., 193, 853PubMedGoogle Scholar
  119. Zimmermann, E. and Krivoy, W.A. (1973). Progr. Brain Res., 39, 383Google Scholar
  120. Zimmermann, E. and Krivoy, W.A. (1974). Proc. Soc. Exp. Biol. Med., 146, 575PubMedGoogle Scholar
  121. Zwiers, H., Veldhuis, D., Schotman, P. and Gispen, W.H. (1976). Neurochem. Res., 1, 669Google Scholar
  122. Zwiers, H., Wiegant, V.M., Schotman, P. and Gispen, W.H. (1977). InMechanism, Regulation and Special Functions of Protein Synthesis in the Brain, ed. S. Roberts, A. Lajtha and W.H. Gispen ( Elsevier, Amsterdam ) p. 267Google Scholar
  123. Zwiers, H., Wiegant, V.M., Schotman, P. and Gispen, W.H. (1978). Neurochem. Res., 3, 455PubMedGoogle Scholar
  124. Zwiers, H., Tonnaer, J., Wiegant, V.M., Schotman, P. and Gispen, W.H. (1979). J. Neurochem., 33, 247PubMedGoogle Scholar

Copyright information

© Pavel D. Hrdina and Radhey L. Singhal 1981

Authors and Affiliations

  • Victor M. Wiegant
  • David de Wied

There are no affiliations available

Personalised recommendations