Ventilation in Active and in Inactive Insects

  • P. L. Miller


The concept that insect respiration depends only on diffusion supplemented in larger species by ventilation is in need of an overhaul: the situation is much more complex. For example, ventilation appears in a variety of forms, and diffusion probably does not play the dominant role hitherto assigned to it. The insect respiratory system displays much refinement in its control systems, and there is a diversity of mechanisms which allows different species to inhabit environments ranging from the wettest to the driest, and to change abruptly from low rates to high rates of metabolism.


Flight Muscle Abdominal Ganglion Compression Stroke Desert Locust Tracheal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burrows, M. 1974. Modes of activation of motoneurones controlling ventilatory movements in locust abdomen. Phil. Trans. R. Soc. 269B, 29–48.CrossRefGoogle Scholar
  2. Burrows, M. 1980. The tracheal supply to the central nervous system of the locust. Proc. Roy. Soc. B 207, 63–78.CrossRefGoogle Scholar
  3. Carlson, J.R. 1977a. The imaginal ecdysis of the cricket (Teleogryllus oceanicus). I. Organization of motor programs and roles of central and sensory control. J. Comp. Physiol. 115, 299–317.Google Scholar
  4. Carlson, J.R. 1977b. The imaginal ecdysis of the cricket (Teleogryllus oceanicus). II. The roles of identified motor units. J. Comp. Physiol. 115, 319–336.CrossRefGoogle Scholar
  5. Case, J.F. 1961. Organization of the cockroach respiratory center. Biol. Bull. Woods Hole 111, 385.Google Scholar
  6. Elliott, C.J.H. 1980. Neurophysiological analysis of locust behaviour during ecdysis. D. Phil. Thesis, Oxford.Google Scholar
  7. Glass, M., Burggren, W.W. and Johansen, K. 1978. Ventilation in an aquatic and a terrestrial chelonian reptile. J. Exp. Biol. 72, 165–179.PubMedGoogle Scholar
  8. Hamilton, A.G. 1964. The occurrence of periodic or continuous discharge of carbon dioxide by male desert locusts (Schistocerca gregaria Forskâl) measured by an infra-red gas analyser. Roy. Proc. Soc. B 160, 373–395.CrossRefGoogle Scholar
  9. Hamilton, A.G. 1972. The combinued use of a twin channel null-balance paramagnetic 02 analyser and an infra-red CO2 analyser for measuring respiration in insects. Lab. Prac. 21, 807–809.Google Scholar
  10. Hughes, T.D. 1980a. The imaginal ecdysis of the desert locust, Schistocerca gregaria. I. Adescription of the behaviour. Physiol. Ent. 5, 47–54.CrossRefGoogle Scholar
  11. Hughes, T.D. 1980b. The imaginal ecdysis of the desert locust, Schistocerca gregaria. II.Motor activity underlying the preemergence and emergence behaviour. Physiol. Ent. 5, 55–71.CrossRefGoogle Scholar
  12. Hughes, T.D. 1980c. The imaginal ecdysis of the desert locust, Schistocerca gregaria. III. Motor activity underlying the expansional and post-expansional behaviour. Physiol. Ent. 5, 141–152.CrossRefGoogle Scholar
  13. Hughes, T.D. 1980d. The imaginal ecdysis of the desert locust, Schistocerca gregaria. IV. The role of the gut. Physiol. Ent. 5, 153–164.CrossRefGoogle Scholar
  14. Kaars, C. 1979. Neural control of homologous behaviour patterns in two blaberid cockroaches. J. Insect Phyiol. 25, 209–218.CrossRefGoogle Scholar
  15. Kammer, A.E. 1976. Respiration and the generation of rhythmic outputs in insects. Fed. Proc. 35, 1992–1999.PubMedGoogle Scholar
  16. Kestler, P. 1971. Die Diskontinuierliche Ventilation bei Periplaneta americana L. und anderen Insekten. Dissertation, Wurzburg, 1971.Google Scholar
  17. Kestler, P. 1978. Atembewegungen und Gas austausch bei Ruheatmung adulter terristrischer Insekten. Verh. Dtsch. Zool. Ges. 1978, 269.Google Scholar
  18. Kestler, P. 1980. Saugventilation verhibdert bei Insekten die Wasserabgabe aus dem Tracheensystem. Verh. Dtsch. Zool. Ges. 1980, 306.Google Scholar
  19. Komatsu, A. 1977. Change of respiratory movement after emergence in the cockroach, Periplaneta australasiae. Jap. J. Appl. Ent. Zool. 21, 179–183.CrossRefGoogle Scholar
  20. Komatsu, A. 1980. Segmental homology in abdominal motoneurons of the cockroach, Periplaneta australasiae. Zool. Mag. 89, 154–165.Google Scholar
  21. Krafsur, E.S., Willman, J.R., Graham, C.L. and Williams, R.E. 1970. Observations on spiracular behavior in Aedes mosquitoes. Ann. Entomol. Soc. Amer. 63, 684–696.PubMedGoogle Scholar
  22. Lewis, G.W., Miller, P.L. and Mills, P.S. 1973. Neuromuscular mechanisms of abdominal pumping in the locust. J. Exp. Biol. 59, 149–168.Google Scholar
  23. Loveridge, J.P. 1968. The control of water loss in Locusta migratoria migratorioides R. & F. H. Water loss through the spiracles. J. Exp. Biol. 49, 15–29.Google Scholar
  24. Longley, A. and Edwards, J.S. 1979. Tracheation of abdominal ganglia and cerci in the house cricket Acheta domesticus (Orthoptera, Gryllidae). J. Morph. 159, 233–244.CrossRefGoogle Scholar
  25. Miller, P.L. 1966. The supply of oxygen to the active flight muscles of some large beetles. J. Exp. Biol. 45, 285–304.PubMedGoogle Scholar
  26. Miller, P.L. 1974. “Respiration-Aerial Gas Transport,” in: Physiology of Insecta, (M. Rockstein, ed.). Academic Press, New York and London: 6, 345–402.Google Scholar
  27. Miller, P.L. 1979. A possible sensory function for the stop-go patterns of locomotion in phorid flies. Physiol. Ent. 4, 361–370.CrossRefGoogle Scholar
  28. Miller, P.L. 1981. “Respiration,” in: The American Cockroach, ( K.G. Aidyodi and W.J. Bell, eds.), Chapman and Hall, London (In press).Google Scholar
  29. Miller, P.L. and Mills, P.S. 1976. “Some aspects of the development of breathing in the locust,” in: Perspectives in Experimental Biology. I. Zoology, (P. Spencer Davis, ed.), Pergamon Press, Oxford, (199–208).Google Scholar
  30. Myers, T.B. and Retzlaff, E. 1963. Localization and action of the respiratory centre of the Cuban burrowing cockroach. J. Insect Physiol. 9, 607–614.CrossRefGoogle Scholar
  31. Paulpandian, A. 1964. Cyclic ventilation movement in the common cockroach, Periplaneta americana. Curr. Sci. 33, 404–405.Google Scholar
  32. Pearson, K.G. 1980. Burst generation in coordinating interneurons of the ventilatory system of the locust. J. Comp. Physiol. 137, 305–313.CrossRefGoogle Scholar
  33. Plateau, F. 1884. Recherches expérimentales sur les mouvements respiratoires des insectes. Mém. Acad. R. Belg. 45, 1–219.Google Scholar
  34. Punt, A., Parsler, W.J. and Kuchlein, J. 1957. Oxygen uptake in insects with cyclic CO2 release. Biol. Bull. Woods Hole 112 108–119.CrossRefGoogle Scholar
  35. Reynolds, S.E. 1980. Integration of behaviour and physiology in ecdysis. Adv. Insect Physiol. 15, 475–595.CrossRefGoogle Scholar
  36. Schneiderman, H.A. 1960. Discontinuous respiration in insects: role of the spiracles. Biol. Bull. Woods Hole 119, 494–528.CrossRefGoogle Scholar
  37. Severinus, M.A. 1645. Zootomia Democritaea id est Anatome Generalis totius animantium, opificii libris quinque distincta, quorum feriem sequens facies delieabit. London.Google Scholar
  38. Stride, G.P. 1958. The application of a Bernoulli equation to problems of insect respiration. Proc. Xth. Int. Comgr. Ent. 2, 335–336.Google Scholar
  39. Truman, J.W. 1978. Hormonal release of stereotyped motor programmes from the isolated nervous system of the cecropia silkmoth. J. Exp. Biol. 74, 151–173.Google Scholar
  40. Truman, J.W. 1979. Interaction between abdominal ganglia during the performance of hormonally triggered behavioural programmes in moths. J. Exp. Biol. 82, 239–253.PubMedGoogle Scholar
  41. Truman, J.W. and Endo, P.T. 1974. Physiology of insect ecdysis: neural and hormonal factors involved in wing-spreading behaviour of moths. J. Exp. Biol. 61, 47–55.PubMedGoogle Scholar
  42. Wasserthal, L.T. 1976. Heartbeat reversal and its correlation with accessory pulsatile organs and abdominal movement in Lepidoptera. Experientia 32, 577–578.CrossRefGoogle Scholar
  43. Wasserthal, L.T. 1980. Oscillating haemolymph ‘circulation’ in the butterfly Papilio machaon L. revealed by contact thermography and photocell measurements. J. Comp. Physiol. 139, 145–163.Google Scholar
  44. Weis-Fogh, T. 1964. Functional design of the tracheal system of flying insects as compared with the avian lung. J. Exp. Biol. 41, 207–227.Google Scholar
  45. Weis-Fogh, T. 1967. Respiration and tracheal ventilation in locusts and other flying insects. J. Exp. Biol. 47, 561–587.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • P. L. Miller
    • 1
  1. 1.Department of ZoologyUniversity of OxfordOxfordEngland

Personalised recommendations