Advertisement

Polarized Dynamic Light Scattering as a Probe of Macromolecular Intramolecular Motions

  • R. Pecora
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 73)

Abstract

Dynamic polarized light scattering is routinely used to study translational diffusion of macromolecules in solution. For macro-molecules comparable in size to the wavelength of light, it may also be used to probe macromolecular rotations and long range intramolecular motions. The basic theory of dynamic light scattering from these “large” macromolecules as well as techniques of data fitting are discussed. A brief survey of experimental results for both synthetic and biological macromolecules is given.

Keywords

Correlation Function Dynamic Light Scattering Slow Mode Translational Diffusion Time Correlation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Pecora, J. Chem. Phys. 40:1604 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    R. Pecora, J. Chem. Phys. 48:4126 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    H. Z. Cummins, F. D. Carlson, T. J. Herbert, and G. Woods, Biophys. J. 9:518 (1969).CrossRefGoogle Scholar
  4. 4.
    S. Fujime, J. Phys. Soc. Japan 29:416 (1970).CrossRefGoogle Scholar
  5. 5.
    D. W. Schaefer, G. B. Benedek, P. Schofield, and E. Bradford, J. Chem. Phys. 55:3884 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    T. A. King, A. Knox, and J. D. G. McAdam, Biopolymers 12:1917 (1973).CrossRefGoogle Scholar
  7. 7.
    E. Loh, E. Ralston, and V. N. Schumaker, Biopolymers 18:2549 (1979).CrossRefGoogle Scholar
  8. 8.
    E. Loh, Biopolymers 18:2569 (1979).CrossRefGoogle Scholar
  9. 9.
    H. Maeda and N. Saito, J. Phys. Soc. Japan 27:984 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    H. Maeda and N. Saito, Polymer 4:309 (1973).Google Scholar
  11. 11.
    S. R. Aragon and R. Pecora, J. Chem. Phys. 66:2506 (1977).ADSCrossRefGoogle Scholar
  12. 12.
    R. R. Wilson and V. A. Bloomfield, Biopolymers 18:1543 (1979).CrossRefGoogle Scholar
  13. 13.
    G. Koopmans, B. J. Van der Meer, P. C. Hopman, and J. Greve, Biopolymers 18:1533 (1979).CrossRefGoogle Scholar
  14. 14.
    R. Pecora, J. Chem. Phys. 43:1562 (1965); 49:1032 (1968).Google Scholar
  15. 15.
    A. Perico, P. Piaggio, and C. Cuniberti, J. Chem. Phys. 62: 2690 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    T. F. Reed and J. F. Frederick, Macromolecules 4:72 (1971).ADSCrossRefGoogle Scholar
  17. 17.
    O. Kramer and J. E. Frederick, Macromolecules 5:69 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    W. Huang and J. E. Frederick, Macromolecules 7:34 (1974).ADSCrossRefGoogle Scholar
  19. 19.
    T. A. King, A. Knox, and J. D. G. McAdam, Chem. Phys. Lett. 19:351 (1973).ADSCrossRefGoogle Scholar
  20. 20.
    T. A. King, A. Knox, and J. D. G. McAdam, J. Polym. Sci. Polym. Symp. 44:195 (1974).CrossRefGoogle Scholar
  21. 21.
    J. D. G. McAdam and T. A. King, Chem. Phys. 6:109 (1974).CrossRefGoogle Scholar
  22. 22.
    B. E. A. Saleh and J. Hendrix, Chem. Phys. 12:25 (1976).CrossRefGoogle Scholar
  23. 23.
    G. Büldt, Macromolecules 10:919 (1977).CrossRefGoogle Scholar
  24. 24.
    Z. Akcasu and H. Gurol, J. Polym. Sci. Polym. Phys. Ed. 14:1 (1976).ADSCrossRefGoogle Scholar
  25. 25.
    W. Burchard, Polymer 20:577 (1979).CrossRefGoogle Scholar
  26. 26.
    W. Burchard, Macromolecules 11:455 (1978).ADSCrossRefGoogle Scholar
  27. 27.
    M. Schmidt and W. Burchard, Macromolecules 11:460 (1978).ADSCrossRefGoogle Scholar
  28. 28.
    W. Burchard, M. Schmidt, and W. H. Stockmayer, Macromolecules 13:580 (1980).ADSCrossRefGoogle Scholar
  29. 29.
    A. Z. Akcasu, M. Benmouna, and C. C. Han, Polymer 21: 866 (1980).CrossRefGoogle Scholar
  30. 30.
    M. Bixon, J. Chem. Phys. 58:1459 (1973).ADSCrossRefGoogle Scholar
  31. 31.
    R. Zwanzig, J. Chem. Phys. 60:2717 (1974).ADSCrossRefGoogle Scholar
  32. 32.
    A. Z. Akcasu and J. S. Higgins, J. Polym. Sci. Polym. Phys. Ed. 15:1745 (1977).ADSCrossRefGoogle Scholar
  33. 33.
    E. DuBois-Violette and P. G. de Gennes, Physics 3:181 (1967).Google Scholar
  34. 34.
    W. N. Huang and J. E. Frederick, J. Chem. Phys. 58:4022 (1973).ADSCrossRefGoogle Scholar
  35. 35.
    S. Ishiwata and S. Fujime, J. Phys. Soc. Japan 30:302 (1970); 31:1601 (1971).Google Scholar
  36. 36.
    S. Ishiwata and S. Fujime, J. Mol. Biol. 68:511 (1972).CrossRefGoogle Scholar
  37. 37.
    F. D. Carlson and A. B. Fraser, in “Photon Correlation and Light Beating Spectroscopy,” H. Z. Cummins and E. R. Pike, eds., Plenum, New York (1974).Google Scholar
  38. 38.
    F. D. Carlson and A. B. Fraser, J. Mol. Biol. 89:283 (1974).CrossRefGoogle Scholar
  39. 39.
    S. Fujime and S. Hatano, J. Mechanochem. Cell Motility 1:81 (1972).Google Scholar
  40. 40.
    S. Fujime, M. Maruyama, and S. Asakura, J. Mol. Biol. 68:347 (1972).CrossRefGoogle Scholar
  41. 41.
    S. B. Dubin, J. H. Lunacek, and G. B. Benedek, Proc. Nat. Acad. Sci. U.S.A. 57:1164 (1967).ADSCrossRefGoogle Scholar
  42. 42.
    K. S. Schmitz and J. M. Schurr, Biopolymers 12:1543 (1973).CrossRefGoogle Scholar
  43. 43.
    R. L. Schmidt, Biopolymers 14:521 (1973).Google Scholar
  44. 44.
    K. S. Schmitz and R. Pecora, Biopolymers 14:521 (1975).CrossRefGoogle Scholar
  45. 45.
    K. L. Wim and W. Prins, Biopolymers 14:111 (1975).CrossRefGoogle Scholar
  46. 46.
    D. Jolly and H. Eisenberg, Biopolymers 15:61 (1976).CrossRefGoogle Scholar
  47. 47.
    J. M. Schurr, Q. Rev. Biophys. 9:109 (1976).CrossRefGoogle Scholar
  48. 48.
    F. C. -Chen, A. Yeh, and B. Chu, J. Chem. Phys. 66:1290 (1977).ADSCrossRefGoogle Scholar
  49. 49.
    R. L. Schmidt, J. A. Boyle, and J. A. Mayo, Biopolymers 16: 317 (1977).CrossRefGoogle Scholar
  50. 50.
    R. L. Schmidt, M. A. Whitehorn, and J. A. Mayo, Biopolymers 16:327 (1977).CrossRefGoogle Scholar
  51. 51.
    M. Caloin, B. Wilhelm, and M. Daune, Biopolymers 16:2091 (1977).CrossRefGoogle Scholar
  52. 52.
    S. C. Lin and J. M. Schurr, Biopolymers 17:425 (1978).CrossRefGoogle Scholar
  53. 53.
    N. Parthasarathy, K. S. Schmitz, and M. K. Cowman, Biopolymers 19:1137 (1980).CrossRefGoogle Scholar
  54. 54.
    P. Mathiez, G. Weisbuch, and C. Mouttet, J. Physique Lett. 39:L139 (1978).CrossRefGoogle Scholar
  55. 55.
    P. Mathiez, C. Mouttet, and G. Weisbuch, Biopolymers 18:1465 (1979).CrossRefGoogle Scholar
  56. 56.
    P. Mathiez, C. Mouttet, and G. Weisbuch, J. Physique Lett. 41:519 (1980).Google Scholar
  57. 57.
    R. Pecora, Macromolecules 2:31 (1969).ADSCrossRefGoogle Scholar
  58. 58.
    S. Fujime, J. Phys. Soc. Japan 29:751 (1970).ADSCrossRefGoogle Scholar
  59. 59.
    S. Fujime and S. Ishiwata, J. Phys. Soc. Japan 29:1651 (1970).ADSCrossRefGoogle Scholar
  60. 60.
    S. Fujime and M. Maruyama, Macromolecules 6:237 (1973).ADSCrossRefGoogle Scholar
  61. 61.
    R. A. Harris and J. E. Hearst, J. Chem. Phys. 44:2595 (1966).ADSCrossRefGoogle Scholar
  62. 62.
    W. I. Lee, K. S. Schmitz, S. C. Lin, and J. M. Schurr, Biopolymers 16:583 (1977).CrossRefGoogle Scholar
  63. 63.
    C. C. Wang and R. Pecora, unpulished results.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. Pecora
    • 1
  1. 1.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations