Advertisement

Recent Developments in Photon Correlation and Spectrum Analysis Techniques: I. Instrumentation for Photodetection Spectroscopy

  • C. J. Oliver
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 73)

Abstract

Initially the nature of the signal in photodetection spectroscopy is discussed and the implications for instrumentation examined. Since a major limitation of such spectroscopy is imperfections-in source or detector these are discussed and their effect demonstrated. The spectral estimators in time-delay space (the autocorrelation function) and the frequency domain (the periodogram) are demonstrated to be equivalent so that choice of either depends on engineering considerations. Finally a selection of instruments operating in either space are discussed and their particular advantages or drawbacks indicated culminating in some conclusions on the choice of suitable instrumentation for photodetection spectroscopy.

Keywords

Count Rate Autocorrelation Function Surface Acoustic Wave Spectral Estimator Detector Imperfection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbiss, J., R. Jones, C. J. Oliver, P. R. Sharpe, and J. M. Vaughan, 1981, to be published.Google Scholar
  2. Alldritt, M., R. Jones, C. J. Oliver, and J. M. Vaughan, J. Phys. E-11: 116 (1978).ADSGoogle Scholar
  3. Baldwin, G. C., and S. I. Friedman, Rev. Sci. Instr. 36; 16 (1965).ADSCrossRefGoogle Scholar
  4. Bluestein, L. I., IEEE Trans AU-18: 451 (1970).Google Scholar
  5. Brown, R. G. W., R. D. Callan, W. Jenkins, R. Jones, I. Miller, C. J. Oliver, E. R. Pike, D. J. Watson, and M. Wedd, Physica Scripta 19: 365 (1979).ADSCrossRefGoogle Scholar
  6. Chen, S. H., and N. Polonsky-Ostrowsky, Opt. Comm. 1: 64 (1969).ADSCrossRefGoogle Scholar
  7. Chu, B., and T. Nose, Macromolecules 12: 599 (1979).ADSCrossRefGoogle Scholar
  8. Coates, P. B., J. Phys. E-1: 878 (1968).ADSGoogle Scholar
  9. Coates, P. B., J. Phys. D-3: 1290 (1970).ADSGoogle Scholar
  10. Cramer, H., Mathematical Methods of Statistics, (New Jersey: Princeton University Press, 1946).MATHGoogle Scholar
  11. Davis, C. C., and T. A. King, J. Phys. A-3: 101 (1970).ADSGoogle Scholar
  12. Euling, R., J. Appl. Phys. 35: 1391 (1964).ADSCrossRefGoogle Scholar
  13. Foord, R., E. Jakeman, C. J. Oliver, E. R. Pike, R. J. Blagrove, E. Wood, and A. R. Peacocke, Nature 227: 242 (1970).ADSCrossRefGoogle Scholar
  14. Foord, R., R. Jones, C. J. Oliver, and E. R. Pike, Appl. Opts. 8: 1975 (1969).Google Scholar
  15. Glauber, R. J., Phys. Rev. Lett. 10: 84 (1963).MathSciNetADSCrossRefGoogle Scholar
  16. Hughes, A. J., E. Jakeman, C. J. Oliver, and E. R. Pike, J. Phys. A-6: 1327 (1973).Google Scholar
  17. Jakeman, E., J. Phys. A-3: 201 (1970).ADSGoogle Scholar
  18. Jakeman, E., in Photon-Correlation and Light-Beating Spectroscopy, edited by H. Z. Cummins and E. R. Pike, (New York: Plenum, 1974). p. 75.Google Scholar
  19. Jakeman, E., C. J. Oliver, and E. R. Pike, J. Phys. A-1: 406 (1968a).ADSGoogle Scholar
  20. Jakeman, E., C. J. Oliver, and E. R. Pike, J. Phys. A-1: 497 (1968b).ADSGoogle Scholar
  21. Jakeman, E., C. J. Oliver, and E. R. Pike, J. Phys. A-4: 827 (1971).ADSGoogle Scholar
  22. Jakeman, E., C. J. Oliver, E. R. Pike, and P. N. Pusey, J. Phys. A-5: L93 (1972).ADSGoogle Scholar
  23. Jakeman, E., and E. R. Pike, J. Phys. A-2: 411 (1969).ADSGoogle Scholar
  24. Koppel, D. E., J. Appl. Phys. 42: 3216 (1971).ADSCrossRefGoogle Scholar
  25. Lombard, F. J., and F. Martin, Rev. Sci. Instr. 32: 200 (1961).ADSCrossRefGoogle Scholar
  26. Mandel, L., Proc. Phys. Soc. 74: 233 (1959).ADSCrossRefGoogle Scholar
  27. Morgan, B. L., and L. Mandel, Phys. Rev. Lett. 16: 1012 (1966).ADSCrossRefGoogle Scholar
  28. Oliver, C. J., in Photon-Correlation and Light-Beating Spectroscopy, edited by H. Z. Cummins and E. R. Pike, (New York: Plenum, 1974). p. 151.Google Scholar
  29. Oliver, C. J., J. Phys. D-11: 2499 (1978).ADSGoogle Scholar
  30. Oliver, C. J., J. Phys. A-12: 591 (1979).ADSGoogle Scholar
  31. Oliver, C. J., J. Phys. D-13: 1145, 1577 (1980a,b)ADSGoogle Scholar
  32. Oliver, C. J., and E. R. Pike, J. Phys. D-1: 1459 (1968).ADSGoogle Scholar
  33. Oliver, C. J., and E. R. Pike, J. Phys. D-3: L73 (1970).ADSGoogle Scholar
  34. Oppenheim, A. V., and R. W. Schafer, Digital Signal Processing, (Englewood, NJ: Prentice-Hall, 1975).MATHGoogle Scholar
  35. Paul, G. L., and P. N. Pusey, to be published (1980).Google Scholar
  36. Prescott, J. R., Nucl. Instr. Meths. 39: 173 (1966).ADSCrossRefGoogle Scholar
  37. Pusey, P. N., and W. I. Goldberg, Phys. Rev. A3: 766 (1971).ADSGoogle Scholar
  38. Rebka, G. A., and R. V. Pound, Nature 180: 1035 (1957).ADSCrossRefGoogle Scholar
  39. Roberts, J. B. G., G. L. Moule, and G. Parry, IEEE Proc. 127: 76 (1980).Google Scholar
  40. Rodman, P. J., and H. J. Smith, Appl. Opts. 2: 181 (1963).ADSCrossRefGoogle Scholar
  41. Scarl, D. B., Phys. Rev. 175: 1661 (1968).ADSCrossRefGoogle Scholar
  42. Schaefer, D. W., and B. J. Berne, Phys. Rev. Lett. 28: 475 (1972).ADSCrossRefGoogle Scholar
  43. Siegert, A. J. E., MIT Rad. Lab. Report No. 465 (1943).Google Scholar
  44. Watson, D., to be published (1981).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • C. J. Oliver
    • 1
  1. 1.Royal Signals and Radar EstablishmentMalvern, WorcsUK

Personalised recommendations