Advertisement

Quasielastic Light Scattering Studies of Microtubule Assembly in Vitro

  • G. R. Palmer
  • D. B. Sattelle
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 73)

Abstract

Quasi-elastic light scattering (QELS) is a rapid, non-invasive technique for the measurement of macromolecular hydrodynamic radii and size distribution (polydispersity).1,2 This method has recently been applied to the study of the self-assembly of supramolecular structures. 3,4,5 Its usefulness in studying such heterogeneous systems is based on:
  1. (a)

    the capacity to probe the system at equilibrium in a non-perturbative manner;

     
  2. (b)

    a very high sensitivity to the appearance of polymeric forms in the presence of high concentrations of monomer;

     
  3. (c)

    the ability to obtain quantitative data without prior physical separation of the components.

     

Keywords

Microtubule Assembly Tubulin Dimer Brain Tubulin Beef Brain Hydrodynamic Particle Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Chu, Laser Light Scattering, Academic Press, New York (1974).Google Scholar
  2. 2.
    B. J. Berne and R. Pecora, Dynamic Light Scattering, John Wiley, New York (1976).Google Scholar
  3. 3.
    L. Hocker, J. Krupp, and G. B. Benedek, Biopolymers 12: 1677–1678 (1973).CrossRefGoogle Scholar
  4. 4.
    G. P. Agarwal, J. G. Gallagher, K. C. Aune, and C. D. Armeniades, Biochem. 16: 1865–1870 (1977).CrossRefGoogle Scholar
  5. 5.
    G. R. Palmer and O. G. Fritz, Biopolymers 18: 1659–1672 (1979).CrossRefGoogle Scholar
  6. 6.
    P. Dustin, Microtubules, Springer-Verlag, Berlin (1978).CrossRefGoogle Scholar
  7. 7.
    W. Herzog and K. Weber, Eur. J. Biochem. 92: 1–8 (1978).CrossRefGoogle Scholar
  8. 8.
    R. P. Frigon and S. N. Timasheff, Biochemistry 14: 4559–4566 (1975).CrossRefGoogle Scholar
  9. 9.
    G. G. Borisy, F. M. Marcum, J. B. Olmsted, D. B. Murphy, and K. A. Johnson, Ann. N.Y. Acad. Sci. 253: 107–132 (1975).ADSCrossRefGoogle Scholar
  10. 10.
    F. Gaskin, C. R. Cantor, and M. L. Shelanski, J. Mol. Biol. 89: 737–758 (1974).CrossRefGoogle Scholar
  11. 11.
    M. L. Shelanski, F. Gaskin, and C. R. Cantor, Proc. Natn. Acad. Sci. U.S.A. 70: 765–768 (1973).ADSCrossRefGoogle Scholar
  12. 12.
    H. M. Bradford, Anal. Biochem. 72: 248–254 (1976).CrossRefGoogle Scholar
  13. 13.
    D. E. Koppel, J. Chem. Phys. 57: 4814–4820 (1972).ADSCrossRefGoogle Scholar
  14. 14.
    F. Gaskin and J. S. Gethner, in Cell Motility, ed. by R. Goldman, T. Pollard and J. Rosenbaum, Cold Spring Harbour Laboratory (1976).Google Scholar
  15. 15.
    J….S. Gethner, G. W. Flynn, B. J. Berne, and F. Gaskin, Biochemistry 16: 5776–5781 (1977).CrossRefGoogle Scholar
  16. 16.
    D. B. Sattelle, G. M. Langford, and K. H. Langley, in Photon Correlation Spectroscopy and Velocimetry, ed. by H. Z. Cummins and E. R. Pike (1976).Google Scholar
  17. 17.
    G. M. Langford, Exp. Cell Res. 111: 139–151 (1978)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • G. R. Palmer
    • 1
  • D. B. Sattelle
    • 1
  1. 1.Department of ZoologyA. R. C. UnitCambridgeUK

Personalised recommendations