Light Scattering Study of the Physical Structure of Human Cervical Mucus

  • A. M. Cazabat
  • B. Volochine
  • J. M. Kunstmann
  • F. C. Chretien
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 73)


We present here a study, performed by light-scattering techniques, of dynamical properties of a biological medium, the human cervical mucus. This medium exhibits a hydrogel-like structure (weak linkages1) containing up to 98% water. The solid phase is a tridimensional network, the meshes of which, for the studied samples, had a mean size equal to 5 ym (determined by scanning electron microscopy)2 (Figure 1). Rheological experiments3 have shown the strong non-new-tonian character of this medium. The distribution of relaxation times t, determined by viscoelastic measurements4, is very large.


Nuclear Magnetic Resonance Experimental Device Lorentzian Line Cervical Mucus Rheological Experiments3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. De Germes, cours Collège de France, 1978–79.Google Scholar
  2. 2.
    F. C. Chretien, J. Gyn. Obst. Biol. Rep. 3: 711 (1974)Google Scholar
  3. 2a.
    F. C. Chretien, J. Gyn. Obst. Biol. Rep. 5: 313 (1976).Google Scholar
  4. 3.
    E. Odeblad, Act. Obst. Gyn. Scand. 47 (Suppl. 1): 59 (1968).Google Scholar
  5. 4.
    N. Eliezer, Biorheology 11: 61 (1974).Google Scholar
  6. 5.
    E. Odeblad, “Female Infertility,” P. Keller Karger, ed. (Bale, 1977).Google Scholar
  7. 6.
    W. Lee, R. J. Blandau, and P. Verdugo, “Workshop Conf. Rottach.,” Egern V. Insler and G. Bettendorf, eds. (1977), p. 68.Google Scholar
  8. 7.
    E. Dubois-Violette and P. G. De Gennes, Physics 3: 181 (1967).Google Scholar
  9. 8.
    P. G. De Gennes, Macromolecules 9: 587 (1976).ADSCrossRefGoogle Scholar
  10. 9.
    M. Adam and M. Delsanti, Macromolecules 10: 1229 (1977)ADSCrossRefGoogle Scholar
  11. 9a.
    M. Adam and M. Delsanti, J. de Phys. Lettres 38: L271 (1977).CrossRefGoogle Scholar
  12. 10.
    E. Geissler and A. M. Hecht, J. Chem. Phys. 65: 103 (1976).ADSCrossRefGoogle Scholar
  13. 11.
    M. Dubois, P. Jouannet, P. Berge, and G. David, Nature 252 (1974)Google Scholar
  14. 11a.
    M. Dubois and P. Berge, Rev. Phys. Appl. 8: 89 (1973).CrossRefGoogle Scholar
  15. 12.
    B. Volochine, P. Berge, and I. Laguës, Phys. Rev. Lett. 25: 1414 (1970)ADSCrossRefGoogle Scholar
  16. 12a.
    B. Volochine and J. Boscq Rolland, Rev. Phys. Appl. 14: 391 (1979).CrossRefGoogle Scholar
  17. 13.
    T. Tanaka, L. O. Hocker, and G. B. Benedek, J. Chem. Phys. 59: 5151 (1973)ADSCrossRefGoogle Scholar
  18. 13a.
    S. J. Candau, C. Y. Young, and T. Tanaka, J. Chem. Phys. 70: 4694 (1979).ADSCrossRefGoogle Scholar
  19. 14.
    M. Adam, M. Delsanti, and G. Pouyet, J. de Phys. Lettres 40: L435 (1979).CrossRefGoogle Scholar
  20. 15.
    N. Ostrowsky, in “Photon Correlation and Light Beating Spectroscopy,” H. Z. Cummins and R. E. Pike, eds. (Plenum, New York, 1974).Google Scholar
  21. 16.
    A. M. Hecht and E. Geissler, J. de Phys. 39: 631 (1978).CrossRefGoogle Scholar
  22. 17.
    S. J. Candau, C. Y. Young, and T. Tanaka, J. Chem. Phys. 70: 4694 (1979).ADSCrossRefGoogle Scholar
  23. 18.
    Colloque de la SFP, Discussions, Bordeaux, 1979.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • A. M. Cazabat
    • 1
  • B. Volochine
    • 2
  • J. M. Kunstmann
    • 3
  • F. C. Chretien
    • 3
  1. 1.Laboratoire de Spectroscopic Hertzienne de l’E.N.SParis Cedex 05France
  2. 2.Orme des MerisiersCEN SaclayGif Sur YvetteFrance
  3. 3.Laboratoire d’HistologieHôpital de BicêtreKremlin BicêtreFrance

Personalised recommendations