Thermodynamic Properties of Superheated Water Deduced from Brillouin Scattering Measurements

  • J. Leblond
  • M. Hareng
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 73)


To test any nucleation theory in liquid, it is necessary to know properties of the liquids in the metastable state. We present here measurements of the sound velocity obtained by Brillouin light scattering in superheated and supercooled water. We give a fitting of the sound velocity data versus temperature by means of a fourth degree polynomial. The isothermal compressibility as deduced from hypersound velocity is fitted by a critical law in the superheating state. Finally we deduce the specific heat at constant volume to evaluate the amount of broken hydrogen bonds.


Sound Velocity Isothermal Compressibility Nucleation Theory Supercooled Water Binodal Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Chukanov and V. P. Skripov, Proceedings of the 8th International Conference on the Properties of Water and Steam. Vol. 1, p. 512 (1974).Google Scholar
  2. 2.
    M. Blander and J. L. Katz, AIChE Journal 21: 833(1975).Google Scholar
  3. 3.
    R. E. Apfel, J. Chem. Phys. 54: 62 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    M. Hareng, and J. Leblond, J. Chem. Phys. 73: 622 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    V. A. Del Grosso and C. W. Mader, J. Acous. Soc. Am. 52: 1442 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    O. Conde, Thesis.Google Scholar
  7. 7.
    E. H. Trinh and R. E. Apfel, J. Chem. Phys. 69: 4245 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    G. S. Kell, J. Chem. and Engineering Data 20: 97 (1975).CrossRefGoogle Scholar
  9. 9.
    B. H. Evstefeev, V. P. Skripov and V. N. Chukanov, Teplofiz. Vyso. Temp. 17: 299 (1979).Google Scholar
  10. 10.
    W. J. de Haas, P. V. Com. Int. Poids Mes. 22: 85 (1950).Google Scholar
  11. 11.
    A. M. Sirota and B. K. Malbcev, Teploenergetika 9: 7 (1959).Google Scholar
  12. 12.
    R. J. Speedy, C. A. Angell, J. Chem. Phys. 65: 851 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    D. Eisenberg, W. Kauzmann, The Structure and Properties of Water. University of Oxford Press, 1969.Google Scholar
  14. 14.
    K. S. Pitzer, Quantum Chemistry. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  15. 15.
    G. E. Walrafen, J. Chem. Phys. 48: 244 (1968).ADSCrossRefGoogle Scholar
  16. 16.
    W. A. Senior, A. E. Verall, J. Phys. Chem. 73: 4242 (1969).CrossRefGoogle Scholar
  17. 17.
    J. Leblond, to be published.Google Scholar
  18. 18.
    E. H. Trinh and R. E. Apfel, J. Chem. Phys. 72: 6731 (1980).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. Leblond
    • 1
  • M. Hareng
    • 1
  1. 1.Laboratoire de Résonance MagnétiqueEcole de Physique et ChimieParis, Cedex 5France

Personalised recommendations