Study of Rayleigh-Bénard Convection Properties Through Optical Measurements

  • P. Bergé
  • M. Dubois
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 73)


Rayleigh-Bernard instability takes place in a fluid layer heated from below, when the temperature difference ΔT applied to the layer exceeds a critical value ΔTC. The parameter of the instability is the Rayleigh number Ra.1


Rayleigh Number Doppler Frequency Laser Doppler Velocimetry Convective Structure Laser Doppler Velocimetry Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, (Oxford: Clarendon, 1961).MATHGoogle Scholar
  2. C. Normand, Y. Pomeau, M. G. Velarde, Rev. Mod. Phys 49: 581 (1977).MathSciNetADSCrossRefGoogle Scholar
  3. 2.
    E. L. Koschmieder, and S. G. Pallas, Int. J. Heat Mass Transfer 17: 991 (1974).CrossRefGoogle Scholar
  4. 3.
    G. Ahlers, and R. P. Behringer, Prog. Theoretical Phys. Supp. No. 64 (1978).Google Scholar
  5. 4.
    J. P. Gollub, and S. V. Benson, Phys. Rev. Lett. 41: 948 (1978).ADSCrossRefGoogle Scholar
  6. 5.
    P. Berge, Dynamical Critical Phenomena and Related Topics, ed. by H. P. Enz, (Berlin, Springer Verlag, 1979).Google Scholar
  7. 6.
    A. Libchaber, and J. Maurer, J. Phys. Lett. 39: L369 (1978).CrossRefGoogle Scholar
  8. 7.
    F. Durst, A. Melling, and J. H. Whitelaw, Principles and Practice of Laser — Doppler Anemometry, (New York: Academic Press, 1976).Google Scholar
  9. 8.
    F. H. Busse, and J. A. Whitehead, J. Fluid Mech. 47: 305 (1971).ADSCrossRefGoogle Scholar
  10. 9.
    P. Berge, and M. Dubois, Phys. Rev. Lett. 32: 1041 (1974).ADSCrossRefGoogle Scholar
  11. 9a.
    I. Procaccia, “System far from Equilibrium” Sitges (Barcelona, Juin 1980).Google Scholar
  12. 10.
    P. Berge, V. Croquette, and M. Dubois (to be published).Google Scholar
  13. 11.
    H. Oertel, Physics — Chemical Hydrodynamics, P. CH 80 (Madrid, 1980).Google Scholar
  14. 12.
    R. Farhadieh, and R. S. Tankin, J. Fluid Meeh. 66: 739 (1974).ADSCrossRefGoogle Scholar
  15. 13.
    H. Nataf, private communication.Google Scholar
  16. 14.
    P. Berge, and M. Dubois, J. Phys. Lett. 40: L505 (1979).CrossRefGoogle Scholar
  17. 15.
    F. H. Busse, and J. A. Whitehead, J. Fluid Mech. 66: 67 (1974).ADSCrossRefGoogle Scholar
  18. 16.
    L. N. Howard, Proceedings of the Eleventh International Congress on Applied Mechanics, (Springer Verlag, 1966). p. 1109.Google Scholar
  19. 17.
    M. Dubois, and P. Berge, Phys. Lett. A76: 53 (1980); and J. de Phys. (submitted).ADSGoogle Scholar
  20. 18.
    V. Croquette, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • P. Bergé
    • 1
  • M. Dubois
    • 1
  1. 1.Division de la Physique, Service de Physique du Solide et de Resonance MagnetiqueCommissariat a l’Energie Atomique C. E. N.SaclayFrance

Personalised recommendations