Micellar Size as a Function of Pressure, Temperature, and Salt Concentration for a Series of Cationic Surfactants

  • D. F. Nicoli
  • R. Ciccolello
  • J. Briggs
  • D. R. Dawson
  • H. W. Offen
  • L. Romsted
  • C. A. Bunton
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 73)


The size, shape and structure of the micellar aggregates formed from ionic surfactants are believed to be influenced by a variety of variables12. These include the surfactant composition (hydrocarbon “chain length” and headgroup species) and molarity; the counterion species and concentration; and finally temperature and pressure. Pioneering studies of micelle size as a function of temperature and salt concentration have been made using the powerful technique of quasi-elastic light scattering spectroscopy by Benedek’s group at MIT3–5, Corti and Degiorgio6,7, and others8,9.


Surfactant Concentration Micelle Size Prolate Ellipsoid Krafft Point Hydrocarbon Chain Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Wennerstrom and B. Lindman, Phys. Reports 52, 1 (1979)ADSCrossRefGoogle Scholar
  2. 1a.
    B. Lindman and H. Wennerstrom, Topics Current Chenu 87, 3 (1980).Google Scholar
  3. 2.
    F. M. Menger, Accts. Chenu Res, 12, 111 (1979).CrossRefGoogle Scholar
  4. 3.
    N. A. Mazer, G. B. Benedek and M. C. Carey, J. Phys. Chem. 80, 1075 (1976).CrossRefGoogle Scholar
  5. 4.
    N. A. Mazer, M. C. Carey and G. B. Benedek in: Micellization, Solubilization and Microemulsions, Vol. 1, ed., K. L. Mittal (Plenum Press, New York, 1977).Google Scholar
  6. 5.
    P. J. Missel, N. A. Mazer, G. B. Benedek, C. Y. Young and M. C. Carey, J. Phys. Chem. 84, 1044 (1980).CrossRefGoogle Scholar
  7. 6.
    M. Corti and V. Degiorgio, Opt. Commun. 14, 358 (1975).ADSCrossRefGoogle Scholar
  8. 7.
    M. Corti and V. Degiorgio, Ann. Phys. 3: 303 (1978).Google Scholar
  9. 8.
    D. McQueen and J. Hermans, J. Colloid Interface Sci. 39: 389 (1972)CrossRefGoogle Scholar
  10. 8a.
    V. Cooper et al., Biochem. Biophys. Acta 363: 86 (1974).Google Scholar
  11. 9.
    A. Rohde and E. Sackmann, J. Colloid and Interface Sci. 70: 494 (1979).CrossRefGoogle Scholar
  12. 10.
    D. F. Nicoli, D. R. Dawson, and J. W. Offen, Chem. Phys. Lett. 66: 291 (1979).ADSCrossRefGoogle Scholar
  13. 11.
    D. R. Dawson and H. W. Offen, Rev. Sci. Instrum, in press.Google Scholar
  14. 12.
    D. E. Koppel, J. Chem. Phys. 57: 4814 (1972).ADSCrossRefGoogle Scholar
  15. 13.
    C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, J. Phys. Chem. 82: 1375 (1978).CrossRefGoogle Scholar
  16. 14.
    J. Briggs, D. F. Nicoli, and R. Ciccolello, Chem. Phys. Lett. 73: 149 (1980).ADSCrossRefGoogle Scholar
  17. 15.
    F. Perrin, J. Phys. Radium 7: 1 (1936)MATHCrossRefGoogle Scholar
  18. 15a.
    B. Chu, Laser Light Scattering (Academic Press, New York, 1974).Google Scholar
  19. 16.
    M. Corti and V. Degiorgio in: Light Scattering in Liquids and Macromolecular Solutions, ed. by V. Degiorgio, M. Corti and M. Giglio (Plenum Press, New York, 1980). Also — J. Phys. Chem., in press.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • D. F. Nicoli
    • 1
  • R. Ciccolello
    • 1
  • J. Briggs
    • 1
  • D. R. Dawson
    • 2
  • H. W. Offen
    • 2
  • L. Romsted
    • 2
  • C. A. Bunton
    • 2
  1. 1.Physics DepartmentUniversity of California at Santa BarbaraSanta BarbaraUSA
  2. 2.Chemistry DepartmentUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations