Advertisement

Small Angle Neutron Scattering by Polymer Solutions

  • B. Farnoux
  • G. Jannink
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 73)

Abstract

The small angle scattering (close to the incident direction1) reveals correlations at large distances inside the sample, as typically exhibited in polymer solutions. Earlier, small angle scattering experiments on dilute solutions using electromagnetic radiations were performed for the purpose of polymer characterization.2 Small angle neutron scattering (SANS) is an experimental technique introduced about ten years ago for observing polymer conformations in all concentration ranges from dilute solution to the melt.3–6

Keywords

Form Factor Polymer Solution Scattered Intensity Scatter Cross Section Scattering Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Guinier, and G. Fournet, Small Angle Scattering of X-rays, John Wiley, New York (1955).Google Scholar
  2. 2.
    See for example: D. McIntyre, and F. Cornick, eds., Light Scattering from Dilute Polymer Solutions, Gordon and Breach, New York (1964).Google Scholar
  3. 3.
    J. P. Cotton, B. Farnoux, G. Jannink, J. Mons, and C. Picot, CR. Acad. Sci. C275: 175 (1972).Google Scholar
  4. 4.
    R. G. Kirste, W. A. Kruse, and J. Schelten, Makromol. Chem. 162: 299 (1973).CrossRefGoogle Scholar
  5. 5.
    D. G. Ballard, J. Schelten, and G. D. Wignall, Eur. Polym. J. 9: 965 (1973).CrossRefGoogle Scholar
  6. 6.
    J. P. Cotton et al, Phys. Rev. Lett. 32: 109 (1974).CrossRefGoogle Scholar
  7. 7.
    P. G. de Gennes, Scaling Concepts in Polymers Physics, Cornell University Press, Ithaca, New York (1979).Google Scholar
  8. 8..
    A complete description will be available in a forthcoming book by J. des Cloizeaux and G. Jannink.Google Scholar
  9. 9.
    A. Maconnachie, and R. W. Richards, Polymer 19: 739 (1978).CrossRefGoogle Scholar
  10. 10.
    J. P. Cotton et al, Macromolecules 7: 863 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    M. Daoud et al, Macromolecules 8: 804 (1975).ADSCrossRefGoogle Scholar
  12. 12.
    P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York (1967).Google Scholar
  13. 13.
    J. C. Le Guillou, and J. Zinn-Justin, Phys. Rev. Lett. 39: 95 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    P. G. de Gennes, Phys. Lett. 38A: 339 (1972).ADSGoogle Scholar
  15. 15.
    J. des Cloizeaux, J. Phys. (Paris) 36: 281 (1975).CrossRefGoogle Scholar
  16. 16.
    S. F. Edwards, Proc. Phys. Soc. 88: 265 (1966).ADSCrossRefGoogle Scholar
  17. 17.
    M. Daoud, and G. Jannink, J. Phys. (Paris) 37: 973 (1976).CrossRefGoogle Scholar
  18. 18.
    A. A. Davydov, Quantum Mechanics, 2d ed., Pergamon Press, New York (1964).Google Scholar
  19. 19.
    M. Born, and E. Wolf, Principles of Optics, 3d ed., Pergamon Press, New York (1965).Google Scholar
  20. 20.
    A. Guinier, Theorie et Technique de la Radiocristallographie, Dunod (1964).Google Scholar
  21. 21..
    See for example Figure 1 of Reference 10.Google Scholar
  22. 22..
    J. P. Cotton, CEA-N-1743 (1974).Google Scholar
  23. 23.
    G. E. Bacon, “Coherent neutron scattering amplitude,” Acta Cryst. A28: 357 (1972).Google Scholar
  24. 24.
    J. P. Cotton, and H. Benoit, J. Phys. (Paris) 36: 905 (1975).CrossRefGoogle Scholar
  25. 25.
    H. C. Brinkmann, and J. J. Hermans, J. Chem. Phys. 17: 574 (1949).ADSCrossRefGoogle Scholar
  26. 26.
    J. des Cloizeaux, and G, Jannink, Physica 102A: 120 (1980).ADSCrossRefGoogle Scholar
  27. 27.
    J. François, F. Candau, and H. Benoit, Polymer 15: 618 (1974).CrossRefGoogle Scholar
  28. 28.
    J. François, and F. Candau, Eur. Polym. J. 9: 1355 (1973).CrossRefGoogle Scholar
  29. 29.
    J. Lonescu, Thesis, Strasbourg (1979).Google Scholar
  30. 30.
    J. Brandrup, and E. H. Immergut, Polymer Handbook, part VII, J. Wiley, New York (1975).Google Scholar
  31. 31.
    P. A. Egelstaff, An Introduction to the Liquid State, Academic Press, London and New York (1967).Google Scholar
  32. 32.
    H. Benoit, and Picot, Pure Appl. Chem. 12: 545 (1966).CrossRefGoogle Scholar
  33. 33.
    B. Chu, and T. Nose, Macromolecules 13: 122 (1980).ADSCrossRefGoogle Scholar
  34. 34.
    H. Eisenberg, Biological Macromolecules and Polyelectrolytes in Solution, Clarendon Press, Oxford (1976).Google Scholar
  35. 35..
    M. Nierlich, to be published.Google Scholar
  36. 36.
    C. Tanford, Physical Chemistry of Macromolecules, John Wiley, New York (1967).Google Scholar
  37. 37.
    G. Jannink, M. Nierlich, and C. Williams, C. R. Acad. Sci. (Paris) B290: 83 (1980).Google Scholar
  38. 38.
    H. Hayashi, F. Hamada, and A. Nakajima, Macromolecules 9: 543 (1976).ADSCrossRefGoogle Scholar
  39. 39.
    A. Z. Akcasu et al, J. Polym. Sci. 18: 863 (1980).Google Scholar
  40. 40..
    F. Boue, M. Nierlich, and L. Lieber, to appear [LLB-BP.2, 91190 Gif (France)].Google Scholar
  41. 41.
    M. Nierlich, J. P. Cotton, and B. Farnoux, J. Chem. Phys. 69: 1379 (1978).ADSCrossRefGoogle Scholar
  42. 42.
    R. W. Richards, A. Maconnachie, and G. Allen, Polymer 19: 266 (1978).CrossRefGoogle Scholar
  43. 43.
    J. P. Cotton et al, J. Chem. Phys. 65: 1101 (1976).ADSCrossRefGoogle Scholar
  44. 44.
    B. Farnoux et al, J. Phys. (Paris) 39: 77 (1978).CrossRefGoogle Scholar
  45. 45.
    R. Duplessix, Thesis, Strasbourg (1975). See also H. Benoit et al, Polym. Sci. A2, 14: 2119 (1976).Google Scholar
  46. 46.
    G. Lieser, E. W. Fisher, and K. Ibel, J. Polym. Sci. 13: 39 (1975);Google Scholar
  47. 46A.
    R. G. Kirste, B. R. Lehnen, and G. V. Schultz, Makrom. Chem. 177: 1137 (1976).CrossRefGoogle Scholar
  48. 47.
    J. M. Guenet, and C. Picot, Polymer 20: 1483 (1979);CrossRefGoogle Scholar
  49. 47A.
    D. M. Sadler, and A. Keller, Macromolecules 10: 1128 (1977).ADSCrossRefGoogle Scholar
  50. 48.
    C. E. Williams et al, J. Polym. Sci. Polym. Lett. 17: 379 (1979).CrossRefGoogle Scholar
  51. 49.
    G. C. Summerfield, J. S. King, and R. Ullman, J. Appi. Cryst. 11: 548 (1978).CrossRefGoogle Scholar
  52. 50.
    J. S. Higgins, and R. S. Stein, J. Appl. Cryst. 11: 346 (1978).CrossRefGoogle Scholar
  53. 50A.
    J. S. Higgins, and R. S. Stein, Some recent works are published in J. Appl. Cryst. 11: 295–674 (1978).CrossRefGoogle Scholar
  54. 51..
    J. P. Cotton, private communication.Google Scholar
  55. 52.
    M. Nierlich et al, J. Phys. (Paris) 40: 701 (1979).CrossRefGoogle Scholar
  56. 53.
    B. Farnoux et al, J. Phys. (Paris) 39: 77 (1978).CrossRefGoogle Scholar
  57. 54.
    M. Adam, and M. Delsanti, Macromolecules 10: 1229 (1977).ADSCrossRefGoogle Scholar
  58. 55.
    J. Hayter, G. Jannink, F. Brochard-Wyart, P. G. de Gennes, J. Phys. Lett. (Paris) 41: L451 (1980).CrossRefGoogle Scholar
  59. 56..
    Y. Ishikawa, private communication.Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • B. Farnoux
    • 1
  • G. Jannink
    • 1
  1. 1.Laboratoire Léon BrillouinCEN-SACLAYGif sur YvetteFrance

Personalised recommendations