Vibrational Activation and Surface Reactivity ; SF6 Interaction with Silicon Induced by Infrared Laser Radiation

  • T. J. Chuang


Infrared-laser-enhanced Si-SF6 interaction has been studied and the surface reaction yields have been determined as a function of the laser wavelength, the laser intensity and the gas pressure in both perpendicular and parallel beam incidences on the solid. The results clearly show that vibrationally excited SF6 molecules promoted by multiple CO2 laser photons are very reactive to silicon, particularly when the solid surface is simultaneously exposed to the it radiation. The laser-induced reaction occurs at both 20°C and −150°C substrate temperatures. The study, therefore, directly illustrates the close correlation between surface reactivity and vibrational activation for the heterogeneous chemical system.


Vibrational Activation Infrared Laser Radiation Multiple Photon Absorption Parallel Beam Incidence Normal Laser Incidence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.T. Knudtson and E.M. Eyring, Ann. Rev. Phys. Chem. 25, 255 (1974).CrossRefGoogle Scholar
  2. E. Weitz and G. Flynn, ibid. 25, 275 (1974).Google Scholar
  3. 2.
    M. Poliakoff, B. Davies and A. McNeish, M. Tranquille and J.J. Turner, Ber.Bunsenges. Phys. Chem. 82, 121 (1978).Google Scholar
  4. E. Catalano and R.E. Barletta, J. Chem. Phys. 66, 4706 (1977).CrossRefGoogle Scholar
  5. 3.
    J.T. Yates, Jr., J.J. Zinck, S. Sheard and W.H. Weinberg, J. Chem. Phys. 70, 2266 (1979).CrossRefGoogle Scholar
  6. S.G. Brass, D.A. Reed and G. Ehrlich, ibid. 70, 5244 (1979).Google Scholar
  7. 4.
    T.J. Chuang, J. Chem. Phys. 72, 6303 (1980).CrossRefGoogle Scholar
  8. 5.
    P.A. Schulz, Aa. S. Sudbo, D.J. Krajnovich, H.S. Kwok, Y.R. Shen and Y.T. Lee, Ann. Rev. Phys. Chem. 30, 379 (1979).CrossRefGoogle Scholar
  9. 6.
    P.A. Schulz, Aa. S. Sudbo, E.R. Grant, Y.R. Shen and Y.T. Lee, J. Chem. Phys. 72, 4985 (1980).CrossRefGoogle Scholar
  10. 7.
    I. Burak, P. Houston, D.G. Sutton and J.I. Steinfeld, J. Chem. Phys. 53, 3632 (1970).CrossRefGoogle Scholar
  11. R.D. Bates, Jr., J.T. Knudtson, G.W. Flynn and A.M. Ronn, Chem. Phys. Lett. 8, 103 (1971).CrossRefGoogle Scholar
  12. 8.
    L.J. Stinson, J.A. Howard and R.C. Neville, J. Electrochem. Soc. 123, 551 (1976).CrossRefGoogle Scholar
  13. 9.
    J.W. Coburn, H.F. Winters and T.J. Chuang, J. App. Phys. 48, 3532 (1977).CrossRefGoogle Scholar
  14. 10.
    T.J. Chuang, J. Appl. Phys. 51, 2614 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • T. J. Chuang
    • 1
  1. 1.IBM Research LaboratorySan JoseUSA

Personalised recommendations