Advertisement

Energy Transfer Processes in Gas and Surface Reactions

  • B. Kasemo

Abstract

The transformation of chemical energy in a chemical reaction takes place via the elementary excitations of the reacting system. In a gas phase reaction these are the electronic, vibrational, rotational and translational degrees of freedom modes. When the reaction is exothermic the (chemical) reaction energy is channeled into one or several of these excitations, initially in a non-thermal manner. In an endothermic reaction some excitation is necessary to make the reaction go. During the reaction the excitation energy is then converted to chemical energy.

Keywords

Activation Barrier Reaction Energy Energy Transfer Process Internal Excitation Auger Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a discussion of this point see J. Nicholas, “Chemical Kinetics. A modern survey of gas reactions”. ( Harper and Row Publishers London 1976 ).Google Scholar
  2. 2.
    For recent results and references see R.F. Heidner III, J.F. Bott, G.E. Gardner, and J.E. Melzer, J. Chem. Phys. 72 (1980) 4815.CrossRefGoogle Scholar
  3. 3.
    J.C. Polanyi and K.B. Woodall, J. Chem. Phys. 57 (1972) 1574.CrossRefGoogle Scholar
  4. 4.
    J.C. Polanyi in Chemical Kinetics, Physical Chemistry Series One, Vol. 9 p. 135, J.C. Polanyi ed. ( Butterworths, London, 1972 ).Google Scholar
  5. 5.
    D. Arnoldi, K. Kaufman and J. Wolfrum, Phys. Rev. Lett. 34 (1975) 1597.CrossRefGoogle Scholar
  6. 6.
    See e.g. M.F. Golde and B.A. Thrush, in: “Advances in Atomic and Molecular Physics”, Vol. 11, Eds. D.R. Bates and B. Bederson, (Academic Press, New York 1975) p. 361 and ref. 1 and 4.Google Scholar
  7. 7.
    R.C. Oldenborg, J.L. Gole and R.N. Zare, J. Chem. Phys. 60 (1974) 4032CrossRefGoogle Scholar
  8. W.S. Struwe, J.R. Krenos, D.L. McFadden and D.R. Herschbach, J. Chem. Phys. 62 (1975) 404.CrossRefGoogle Scholar
  9. 8.
    For a discussion of these potential curves see T.F. O’Malley, in: “Advances in Atomic and Molecular Physics”, Vol. 7, Eds D.R. Bates and I. Esterman (Academic Press, New York, 1971) p. 223.Google Scholar
  10. 9.
    G. Herzberg, “Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules” (Van Nostrand, Princeton, N.J., 1950) 2nd ed pp 400–405.Google Scholar
  11. 10.
    B. Kasemo, E. Törngvist, J.K. Nörskov and R.I. Lundqvist, Surface Sci. 80 (1979) 179.CrossRefGoogle Scholar
  12. 11.
    B. Kasemo and L. Walldén, Surface Sci. 53 (1975) 393.CrossRefGoogle Scholar
  13. 12.
    J.K. Nörskov, D.M. Newns and B.I. Lundqvist, Surface Sci 80 (1979) 179.CrossRefGoogle Scholar
  14. 13.
    See Refs. 10, and 11, and L. Himmel and P. Kelly, Comments Solid State Phys. 7 (1976) 81.Google Scholar
  15. 14.
    T.J. Chuang, Phys. Rev. Lett., 42 (1979) 815.CrossRefGoogle Scholar
  16. 15.
    T.J. Chuang, private communication.Google Scholar
  17. 16.
    G. Comsa, R. David and B.J. Schumacher, Surface Sci. 95 (1980) L210.CrossRefGoogle Scholar
  18. 17.
    R.P. Thorman, D. Anderson and S.L. Bernasek, Phys. Rev. Lett. 44 (1980) 243.CrossRefGoogle Scholar
  19. 18.
    C.A. Becker, D.J. Auerbach and L. Wharton, to be published.Google Scholar
  20. 19.
    J. Harris, B. Kasemo and E. Törngvist, submitted to Surface Sci.Google Scholar
  21. 20.a)
    R.M. Logan and R.E. Stickney, J. Chem. Phys. 44 (1966) 195CrossRefGoogle Scholar
  22. R.M. Logan and J.C. Keck, J. Chem. Phys. 49 (1968) 860CrossRefGoogle Scholar
  23. T.R. Knowles and H. Suhl, Phys. Rev. Lett 39 (1977) 141CrossRefGoogle Scholar
  24. G.P. Brivio and T.B. Grimley, Surface Sci. 89 (1979) 226CrossRefGoogle Scholar
  25. E.K. Grimmelmann, J.C. Tully, and M.J. Cardillo, J. Chem. Phys. 72 (1980) 1039CrossRefGoogle Scholar
  26. G. Doyen and T.B. Grimley, Surface Sci.91 (1980) 51CrossRefGoogle Scholar
  27. W. Brenig, Z. Phys. B 36 (1980) 227CrossRefGoogle Scholar
  28. R. Sedelmayer and W. Brenig Z. Phys. B. 36 (1980) 245.CrossRefGoogle Scholar
  29. 20.b)
    E. Moller-Hartmann, T.V. Ramakrishnan, and G. Toulouse, Solid State Comm. 9 (1971) 99CrossRefGoogle Scholar
  30. E.G. d’Agliano, P. Kumar, W. Schaich, and H. Suhl, Phys. Rev. B. 11 (1975) 2122CrossRefGoogle Scholar
  31. W. Schaich, Surface Sci. 49 (1975) 221.CrossRefGoogle Scholar
  32. 20.c)
    J.K. Nörskov and B.I. Lundqvist, Surface Sci. 89 (1979) 251CrossRefGoogle Scholar
  33. R. Brako and D.M. Newns, Solid State Comm. 33 113, (1980), XXCrossRefGoogle Scholar
  34. K. Schönhammer and O. Gunnarsson, Phys. Rev. B 22 (1980)Google Scholar
  35. J.W. Gadzuk and H. Metiu, Phys. Rev. B. 22 (1980), XXXGoogle Scholar
  36. J. Chem. Phys. (to be published), Proc. of ICSS IV, Cannes, Sept. 1980, J. Gadzuk(to be published)Google Scholar
  37. B. Gumhalter, Proc. of ICSS IV, Cannes, Sept. 1980Google Scholar
  38. Z. Pensar and M. Sunjic (unpublished).Google Scholar
  39. 21.
    When the interaction is strong i.e. when the adsorption well is » kTgas, the velocity and direction of the molecule at the surface will be determined by the acceleration in the well. In such case the original velocity and direction of motion, far from the surface, is of minor importance.Google Scholar
  40. 22.
    J.E. Hurst, C.A. Becker, J.P. Cowin, K.C. Janda, L. Wharton, and D.J. Auerbach, Phys. Lett. 43 (1979) 1175.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • B. Kasemo
    • 1
  1. 1.Department of PhysicsChalmers University of TechnologyGöteborgSweden

Personalised recommendations