High Resolution Electron Energy Loss and Surface Enhanced Raman Studies of Pyridine and Benzene on Ag(111)

  • J. E. Demuth
  • P. N. Sanda
  • J. M. Warlaumont
  • J. C. Tsang
  • K. Christmann


High resolution electron energy loss (EELS), UV photoemission (UPS), low energy electron diffraction (LEED), Auger electron, and thermal desorption spectroscopic techniques have been applied to characterize the bonding, molecular orientation and vibrations of pyridine and benzene on clean Ag(111). These results are used to interpret the surface enhanced Raman spectra of these molecules adsorbed on a clean, well-defined single crystal Ag(111) surface containing a smooth periodic modulation (1 micron wavelength,~ 500 Å amplitude) which permits optical coupling to surface plasmons-polaritons. We observe enhanced Raman scattering (RS) for chemisorbed species only when we are at appropriate incidence angles so as to excite surface plasmons. Coverage-dependent RS studies indicate a long range field enhancement of ~ 102 for physisorbed layers and a mode-selective, short-range enhancement of ~ 104 for the symmetric ring breathing mode of pyridine. This short-range enhancement only occurs for pyridine coverages slightly above ~ 3 × 1014 molecules/cm2 where changes in the UPS spectra and our UPS derived uptake-rates are also observed. Similar coverage-dependent effects are also observed in UPS and EELS for chemisorbed pyridine on the ideal Ag(111) surface. These as well as LEED results showing the modulated surface to be predominately (~ 90 %) single crystal Ag(111), encourage us to directly compare the results obtained for the two surfaces.

From EELS we determine that chemisorbed pyridine π-bonds and lies flat on the surface of Ag(111) to within ~ 5° but at higher chemisorption coverages (> 3 × 1014 molecules/cm2) becomes nitrogen-lone-pair-bonded, inclined ~ 55° to the surface and rotated ~ 30° about the C2 v symmetry axis. Benzene is found to π-bond and has vibrations characteristic of a C3 v(od) point group symmetry. We thereby relate the strong short-range enhancement observed in RS to the occurrence of nitrogen lone-pair-bonding and the inclination of chemisorbed pyridine to Ag(111). Both the mode selectivity and structure sensitivity for chemisorbed pyridine are shown to be consistent with the recent surface plasmon-polariton model of enhanced Raman scattering by Kirtley, Jha and Tsang. Also observed in RS are additional vibrations which we associate with pyridine bound to step sites and at or near graphitic carbon impurities.


Surface Enhance Raman Scattering Point Group Symmetry Liquid Benzene Ring Breathing Mode Surface Enhance Raman Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Fleishmann, P.J. Hendra, A.J. McQuillan, Chem, Phys. Lett. 26, 163 (1974).CrossRefGoogle Scholar
  2. D.L. Jeanmarie, R.P. Van Duyne J. Electroanal. Chem. 84, 1 (1977).CrossRefGoogle Scholar
  3. B. Pettinger, U. Wenning, Chem. Phys. Lett. 56, 253 (1978).CrossRefGoogle Scholar
  4. 2.
    C.Y. Chen, E. Burstein, S. Lundqvist, Solid State Commun, 32, 63 (1979).CrossRefGoogle Scholar
  5. 3.
    J.A. Creighton, C.G. Blatchford, M.G. Albrecht, J. Chem. Soc., Faraday Transactions II 75 790 (1979).CrossRefGoogle Scholar
  6. M. Kerker, O. Siiman, L.A. Blum, D.W. Wang, Applied Optics XX, X XX (1980).Google Scholar
  7. 4.
    J.C. Tsang, J.R. Kirtley, J.A. Bradley, Phys. Rev. Lett. 43, 772 (1979).CrossRefGoogle Scholar
  8. 5.
    J.E. Rowe, C.V. Shank, D.A. Zwemer, C.A. Murray, Phys. Rev. Lett. 4, 1770 (1980).CrossRefGoogle Scholar
  9. D.A. Zwemer, C.V. Shank, J.E. Rowe, Chem. Phys. Lett. 73, 201 (1980).CrossRefGoogle Scholar
  10. 6.
    T.A. Wood, M.V. Klein, J. Vac. Sci. Technol. 16, 459 (1979).CrossRefGoogle Scholar
  11. 7.
    R.R. Smardzewski, R.J. Colton, J.S. Murday, Chem. Phys. Lett. 68, 53 (1979).CrossRefGoogle Scholar
  12. 8.
    P.N. Sanda, J.M. Warlaumont, J.E. Demuth, J.C. Tsang, K. Christmann, J.A. Bradley, to be published.Google Scholar
  13. 9.
    I. Pockrand, A. Otto, to be published.Google Scholar
  14. 10.
    H. Seki, M. Philpolt,J. Chem. Phys., to be published.Google Scholar
  15. 11.
    M. Moskovits, J. Chem. Phys. 69, 4159 (1978).CrossRefGoogle Scholar
  16. 12.
    B. Pettinger, M.R. Philpolt,J.G. Gordon, III, J. Chem. Phys. XX X XX (1980).Google Scholar
  17. 13.
    M. Fleishman, private communication.Google Scholar
  18. 14.
    S. Lehwald, H. Ibach, J.E. Demuth, Surface Sci. 78, 577 (1978)CrossRefGoogle Scholar
  19. 15.
    B.J. Bandy, D.R. Lloyd, N.V. Richardson, Surface Sci. 89, 344 (1979).CrossRefGoogle Scholar
  20. 16.
    F.P. Netzer, E. Bertel, J.A.D. Matthew, Surface Sci. 92, 43 (1980).CrossRefGoogle Scholar
  21. 17.
    C.S. Allen, R.P. Van Duyne, Chem. Phys. Lett. 63, 455 (1979).CrossRefGoogle Scholar
  22. 18.
    J.R. Kirtley, S.S. Jha, J.C. Tsang, Solid State Comm. 35, n° 7 (1980).Google Scholar
  23. S.S. Jha, J.R. Kirtley, J.C. Tsang, Phys. Rev. B., Oct. 15 (1980).Google Scholar
  24. 19.
    J.E. Demuth, Surf. Sci. 69, 365 (1977).CrossRefGoogle Scholar
  25. 20.
    J.A. Simpson, C.E. Kuyatt, Rev. Sci. Inst. 38, 103 (1967).CrossRefGoogle Scholar
  26. 21.
    H.J. Levinstein, W.H. Robinson, J. Appl. Phys. 33, 3149 (1962)CrossRefGoogle Scholar
  27. 22.
    P.S. Maiya, J.M. Blakely, Appl. Phys. Lett. 7, 60 (1965).CrossRefGoogle Scholar
  28. 23.
    This corresponds to the gauge-correction factor for benzene as supplied with our Varian ion gauge.Google Scholar
  29. 24.
    L. Corrsin, B. Fox, R.C. Lord, J. Chem. Phys. 21, 1170 (1953).CrossRefGoogle Scholar
  30. 25.
    D.J. Pouchart, Aldrich Library of Infrared Spectra (Aldrich Chem. Co., Wisconsin, 1975 ).Google Scholar
  31. 26.
    J.E. Demuth, K. Christmann, P.N. Sanda, Chem. Phys. Lett., to appear.Google Scholar
  32. 27.
    D.A. Long, E.L. Thomas, Trans. Far. Soc. 59, 783 (1963).CrossRefGoogle Scholar
  33. 28.
    D. Sokcevic, Z. Lenac, R. Brado, M. Sunjiç, Z. Phys, B 28, 273 (1977).Google Scholar
  34. 29.
    H. Ibach, H. Hopster, B. Sexton, Appl. Surface Sci, 1, 1 (1977).CrossRefGoogle Scholar
  35. 30.
    N.V. Richardson, Surface Sci. 87, 622 (1979).CrossRefGoogle Scholar
  36. 31.
    S.F. Wong, G.J. Schulz, Phys. Rev. Lett. 35, 1429 (1975).CrossRefGoogle Scholar
  37. 32.
    A. Girlando, M.R. Philpclt, D. Heitmann, J.D., Swalen, R. Santo, J. Chem. Phys. 72, 5187 (1980).CrossRefGoogle Scholar
  38. 33.
    M.R. Mahoney, M.W. Howard, R.P. Cooney, Chem. Phys. Lett. 71, 59 (1980).CrossRefGoogle Scholar
  39. 34.
    J.C. Tsang, J.E. Demuth, P.N. Sanda, J.R. Kirtley, Chem. Phys. Lett., to appear.Google Scholar
  40. 35.
    J.E. Demuth, D.E. Eastman, Phys. Rev. Lett. 32, 1123 (1974);CrossRefGoogle Scholar
  41. J.E. Demuth, D.E. Eastman, J. Vac. Sci. and Technol. 13, 283 (1976).CrossRefGoogle Scholar
  42. 36.
    G.A. Somorjai, J. Vac. Sci and Technol. 1, 250 (1974).CrossRefGoogle Scholar
  43. 37.
    See for example, E. Burstein, C.Y. Chen and S. Lundqvist in Proceedings of Joints US-USSR Symposium on the Theory of Light Scattering in Condensed Matter, eds. J.L. Birman, H.Z. Cummings and H.K. Reband (Plenum Press, NY, 1980 ) p. 479.Google Scholar
  44. 38.
    I. Nenner, G.J. Schulz, J. Chem. Phys. 62, 1747 (1975).CrossRefGoogle Scholar
  45. 39.
    J.E. Demuth, to be published.Google Scholar
  46. 40.
    F. King, R.P. Van Duyne, G.C. Schulz, J. Chem. Phys. 69, 4472 (1978).CrossRefGoogle Scholar
  47. 41.
    J.E. Demuth, P.N. Sanda, J.R. Kirtley, J.C. Tsang, S.S. Jha., to be published.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • J. E. Demuth
    • 1
  • P. N. Sanda
    • 1
    • 2
  • J. M. Warlaumont
    • 1
  • J. C. Tsang
    • 1
  • K. Christmann
    • 3
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA
  2. 2.Affiliated with Cornell UniversityIthacaUSA
  3. 3.Inst. Phys. Chem.Univ. MünchenGFR

Personalised recommendations