Advertisement

Infrared Study of Comparative Adsorption of Some Alcohols and Thiols on γ- Alumina

  • J. Travert
  • O. Saur
  • M. Benaissa
  • J. Lamotte
  • J. C. Lavalley

Abstract

Among the spectroscopic methods used for the characterization of the chemical nature of chemisorbed species, infrared transmission spectroscopy has certainly found the most frequent application. Adsorption of alcohols on alumina has been studied for many years1,2. Despite this fact, even most fundamental questions concerning the system have not been yet answered. A most striking example is the process of adsorption (dissociation or coordination) and the nature of the adsorption sites on γ-Al2O3surface. To solve this problem, we have undertaken a series of infrared experiments using non-deuterated and deuterated alcohols, the vibrational spectra of which had been previously reported in the gaseouos and liquid state3 . Some experiments have been also carried out with methanethiol for comparison. A very detailed analysis of the spectra allows us to determine the nature of irreversible and reversible species. Poisoning experiments precise the mechanism of the adsorption process.

Keywords

Lewis Acid Site Tertiary Alcohol Infrared Study Propargyl Alcohol Isobutyl Alcohol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.G. Greenler, J. Chem. Phys., 37, 2094 (1962).CrossRefGoogle Scholar
  2. 2.
    H. Knozinger and B. Stubner, J. Phys. Chem., 82, 1526 (1978).CrossRefGoogle Scholar
  3. 3.
    J. Travert and J.C. Lavalley, Spectrochim. Acta, 32A, 637 (1976).CrossRefGoogle Scholar
  4. J. Travert, J.C. Lavalley and D. Chenery, Spectrochim. Acta, 35A, 291 (1979).Google Scholar
  5. 4.
    R.O. Kagel, J. Phys Chem. 71. 844 (1967).CrossRefGoogle Scholar
  6. 5.
    J.Travert, J. C.Lavalley and O. Saur, J. Chim. Phys. (in press).Google Scholar
  7. 6.
    J. Murto, A. Kivinen, J. Korppi- Tommola,R. Viitala and J. Hyomaki, Acta Chem. Scand., 27, 107 (1973).CrossRefGoogle Scholar
  8. 7.
    J.P. Gallas and C. Binet, private communication.Google Scholar
  9. 8.
    H.E. Evans and W.H. Weinberg, J. Chem. Phys., 71, 4789 (1979).CrossRefGoogle Scholar
  10. 9.
    J.C. Lavalley, J. Caillod and J. Travert, J. Phys. Chem., 84, 2084 (1980).CrossRefGoogle Scholar
  11. 10.
    O. Saur, T. Chevreay, J. Lamotte, J. Travertand J. C. Lavalley J. Chem, Soc. Faraday Trans I (in press).Google Scholar
  12. 11.
    C. Morterra, Proc. Int. Congr. Catal. 6th, 1976, 194 (1977).Google Scholar
  13. 12.
    J. C. Lavalley, J. Travert and J. Lamotte, J. Chim. Phys. (in press).Google Scholar
  14. 13.
    J. Caillod and J.C. Lavalley, J. Chico. Phys., 77, 379 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • J. Travert
    • 1
  • O. Saur
    • 1
  • M. Benaissa
    • 1
  • J. Lamotte
    • 1
  • J. C. Lavalley
    • 1
  1. 1.Laboratoire de Spectrochimie, Groupe Structure et Réactivité d’Espèces Adsorbées, ERA 824, I.S.M.R.A.Université de CaenCaen CedexFrance

Personalised recommendations