Face Centered Cubic Transition Metal Surface Vibrations

  • G. Allan
  • J. Lopez


We calculate the surface atom and adatom positions or vibration spectra from the electronic structure. The valence bands are described in the tight-binding approximation. We fit the d band parameters to bulk properties. The clean surface atomic positions are obtained by a direct minimization of the crystal energy. The agreement with the experimental results is quite good. All the clean surfaces are found to be contracted. The effect of this contraction on the surface vibration spectra is studied. The contraction increases with the surface roughness. It enhances the force constants between the atoms close to the surface leading to localized step vibrations above the bulk frequency spectrum. The model is also extended to chemisorbed chalcogenide atoms. The experimental positions and vibration frequencies are fitted. Then we can study the influence of chemisorption on the surface relaxation or vibrations and also the elastic indirect interaction between adatoms.


Cohesive Energy Nickel Surface Surface Relaxation Face Center Phonon Dispersion Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.L. Moruzzi, A.R. Williams, J.F. Janak, Phys. Rev. BA5, 2854 (1977).Google Scholar
  2. 2.
    M. Lannoo, J. Phys. (Paris), 40, 461 (1979).CrossRefGoogle Scholar
  3. 3.
    J. Chadi, CECAM Conf. on Atomic Positions at Solid Surfaces (Paris 1980) (unpublished).Google Scholar
  4. 4.
    F. Ducastelle, J. Phys. (Paris), 31, 1055 (1970).CrossRefGoogle Scholar
  5. 5.
    G. Allan, M. Lannoo, Surf. Sci., 40, 375 (1973); Phys, Stat. Sol. (b) 74, 403 (1976).Google Scholar
  6. 6.
    G. Allan, Surf. Sci., 89, 142 (1979).CrossRefGoogle Scholar
  7. 7.
    B. Stupfel, Thesis (Strasbourg 1980) (unpublished).Google Scholar
  8. 8.
    G. Allan, Surf. Sci., 85, 37 (1979).CrossRefGoogle Scholar
  9. 9.
    G. Allan, J. Lopez, Surf. Sci., 95, 214 (1980); 3rd Intern. Conf. Surf. Sci. (Cannes 1980) (to be published).Google Scholar
  10. 10.
    J. Friedel, The Physics of Metals, Ed. J.M. Ziman (Cambridge University Press, 1969 ).Google Scholar
  11. 11.
    G. Allan, Ann. Phys. (Paris), 5, 169 (1970).CrossRefGoogle Scholar
  12. 12.
    H. Ibach, D. Bruchmann, Phys. Rev. Letters, 41, 958 (1978).CrossRefGoogle Scholar
  13. 13.
    G. Allan, J. Wach, 3rd Intern. Conf. Surf. Sci. (Cannes 1980) (to be published).Google Scholar
  14. 14.
    J.F. Van der Veen, R.G. Smeenk, R.M. Tromp, F.A. Saris Surf. Sci. 79, 219 (1979)CrossRefGoogle Scholar
  15. J.A. Davies, D.P. Jackson, N, Matsunami, P.R. Norton, J.V. Andersen, Surf. Sci., 78, 274 (1978).CrossRefGoogle Scholar
  16. 15.
    J.A. Davies, D.P. Jackson, P.R. Norton, D.E. Posner W.N. Unertl, Sol. Stat. Comm., 34, 41 (1980).CrossRefGoogle Scholar
  17. 16.
    H. Ibach, D. Bruchmann, Phys. Rev. Letters, 44, 36 (1980)CrossRefGoogle Scholar
  18. 17.
    V.R. Velasco, F. Yndurain, Surf. Sci., 85, 107 (1979).CrossRefGoogle Scholar
  19. 18.
    H. Ibach, D. Bruchmann (private communication).Google Scholar
  20. 19.
    J. Lopez, G. Allan (to be published).Google Scholar
  21. 20.
    K.O. Legg, F. Jona, D.N. Jepsen, P.M. Marcus, J. Phys. C (Solid State Phys.) 10,937 (1977); Phys. Rev. B16, 5271 (1977).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • G. Allan
    • 1
  • J. Lopez
    • 2
  1. 1.Laboratoire de Physique des SolidesInstitut Supérieur d’Electronique du NordLille CédexFrance
  2. 2.Laboratoire de Physico-ChimieUniversité Claude BernardVilleurbanne CédexFrance

Personalised recommendations