On the Excitation Mechanism of Vibrational Modes of C2H4 Chemisorbed on Pt(111) and Ni(111) by EELS

  • A. M. Baró
  • S. Lehwald
  • H. Ibach


The angular dependence of the vibrational loss intensities of C2H4 chemisorbed on Pt(111) and Ni(111) have been studied by non-specular EELS measurements. The analysis of the angular profiles permits the separation of the contributions from dipole and impact scattering. For Pt(111) all the angular range is dominated by impact scattering except for the C-Pt stretch mode which is dipole. For Ni(111) dipole scattering is important and dominates the intensity contribution in the specular direction. In both cases impact scattering is found to increase at low energies (2 eV). The values of the differential cross section for impact scattering are calculated and compared with those observed by electron impact on free ethylene. The implications of these results for the interpretation of the spectra are outlined. We present also the vibrational spectrum of the room temperature phase of ethylene chemisorbed on Pt(111) recorded in and out of specular, to illustrate the importance of the excitation mechanism for chemical analysis. The analysis of both spectra indicates that two different species are present on the surface each one being excited by a different scattering mechanism.


Angular Dependence Excitation Mechanism Primary Intensity Dipole Contribution Ethylene Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E. Demuth, H. Ibach, S. Lehwald, Phys. Rev. Lett. 40 (1978) 1044.CrossRefGoogle Scholar
  2. 2.
    H, Ibach, H. Hopster, B. Sexton, Appl. Surface Sci. 1 (1977) 1.CrossRefGoogle Scholar
  3. 3.
    C.H. Li, S.Y. Tong, D.L. Mills, Phys. Rev. B 21 (1980) 3057.CrossRefGoogle Scholar
  4. 4.
    S.Y. Tong, C.H. Li, D.L. Mills, Phys. Rev. Lett. 44 (1980) 407.CrossRefGoogle Scholar
  5. 4.
    S.F. Wong and G.J. Schulz, Phys. Rev. Lett. 35 (1975) 1429.CrossRefGoogle Scholar
  6. 5.
    I.C. Walker, A. Stamatovic, S.F. Wong, J. Chem. Phys. 69 (1968) 5532.CrossRefGoogle Scholar
  7. 6.
    A. M. Baró and H. Ibach, to be published.Google Scholar
  8. H. Ibach and S. Lehwald, to be published.Google Scholar
  9. 7.
    A.M. Baró, H. Ibach and H.D. Bruchmann, Surface Sci. 88 (1979) 384.CrossRefGoogle Scholar
  10. 8.
    S. Lehwald and H. Ibach, Surface Sci. 89 (1979) 425.CrossRefGoogle Scholar
  11. 9.
    A.M. Baró and H. Ibach, to be published.Google Scholar
  12. 10.
    H. Ibach and S. Lehwald, J. Vac. Sci. Technol. 15 (1978) 407.CrossRefGoogle Scholar
  13. 11.
    C.Backx, C.P.M. de Groot and P. Biloen, to be published.Google Scholar
  14. 12.
    H. Ibach, H. Hopster and B. Sexton, Appl. Phys. 14 (1977) 21.CrossRefGoogle Scholar
  15. 13.
    K. Horn, A.M. Bradshaw and K. Jacobi, J. Vac. Sci. Technol. 15 (1978) 575.CrossRefGoogle Scholar
  16. 14.
    J.E. Demuth, Surface Sci. 76 (1978) L603.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • A. M. Baró
    • 1
    • 2
  • S. Lehwald
    • 1
  • H. Ibach
    • 1
  1. 1.Institut für Grenzflächenforschung und VakuumphysikKernforschungsanlage JülichJülichWest Germany
  2. 2.Departamento de Fisica FundamentalUniversidad Autónoma de MadridCantoblanco (Madrid)Spain

Personalised recommendations