Advertisement

The Adsorption of Water on Ru(001): Chemisorption and Hydrogen Bonding

  • P. A. Thiel
  • F. M. Hoffmann
  • W. H. Weinberg

Abstract

The adsorption of H2O on Ru(001) at temperatures of 95 K and 165 K has been investigated using electron energy loss spectroscopy, low-energy electron diffraction, and ultraviolet photoelectron spectroscopy. The vibrational data, together with the structural information available, supports a model in which aggregates of water molecules form via population of a first (chemisorbed) layer and subsequent hydrogen bonded layers. At the higher temperature of adsorption, 165 K, major differences in the vibrational spectra are apparent. Possible reasons for these differences are discussed.

Keywords

Vibrational Spectrum Electron Energy Loss Spectrum Ultraviolet Photoelectron Spectroscopy Librational Mode Thermal Desorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.E. Madey, J.T. Yates,Jr., Chem. Phys. Letters 51 (1977) 77.CrossRefGoogle Scholar
  2. 2.
    S. Andersson, J.W. Davenport, Solid State Commun 28 (1978) 677.CrossRefGoogle Scholar
  3. 3.
    G.B. Fisher, B.A. Sexton, Phys. Rev. Letters 44 (1980) 683.CrossRefGoogle Scholar
  4. 4.
    H. Ibach, S. Lehwald, Surface Sci. 91 (1980) 187.CrossRefGoogle Scholar
  5. 5.
    F. Franks, Ed., Water: A Comprehensive Treatise, Plenum Press, New York (1972).Google Scholar
  6. 6.
    P. Schuster, G. Zundel, C. Sandorfy, Eds., The Hydrogen Bond, North-Holland Publishing Co., Amsterdam (1976).Google Scholar
  7. 7.
    K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley-Interscience, New York (1978) 226.Google Scholar
  8. 8.
    J.R. Ferraro, Low-Frequency Vibrations of Inorganic and Coordination Compounds, Plenum Press, New York (1971) 65–76.CrossRefGoogle Scholar
  9. 9.
    M. Van Thiel, E.D. Becker, G.C. Pimentel, J. Chem. Phys. 27 (1957) 486.CrossRefGoogle Scholar
  10. 10.
    S.Y. Tong, C.H. Li, D.L. Mills, Phys. Rev. Letters 44 (1980) 407.CrossRefGoogle Scholar
  11. 11.
    P.A. Thiel, F.M. Hoffmann, W.H. Weinberg, in preparation.Google Scholar
  12. 12.
    J.J. Zinck, W.H. Weinberg, J. Vacuum Sci. Technol. 17 (1980) 188.CrossRefGoogle Scholar
  13. 13.
    L.E. Firment, G.A. Somorjai, Surface Sci. 84 (1979) 275; J. Chem. Phys. 63 (1975) 1037.Google Scholar
  14. 14.
    D.W. Turner, C. Baker, A.D. Baker, C.R. Brundle, Molecular Photoelectron Spectroscopy, Wiley-Interscience, London (1970) 77.Google Scholar
  15. 15.
    I. Abbati, L. Braicovich, B. De Michelis, Solid State Commun. 29 (1979) 511.CrossRefGoogle Scholar
  16. 16.
    P.J. Page, D.L. Trimm, P.M. Williams, J. Chem. Soc. Far. Trans. I 70 (1975) 1769.Google Scholar
  17. 17.
    G.E. Thomas, W.H. Weinberg, Rev. Sci. Instrum. 50 (1979) 497.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • P. A. Thiel
    • 1
  • F. M. Hoffmann
    • 1
  • W. H. Weinberg
    • 1
  1. 1.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations