Eels of Surface Phonons and Vibrations of Adsorbed Species

  • S. Lehwald
  • H. Ibach


By improving the resolution of electron energy loss spectrometers, surface vibrations on platinum and nickel single crystal surfaces could be observed by EELS. The observed phonons are in good agreement with recent theoretical results. On a stepped Pt(111) surface a phonon localized near the step edge and with a frequency slightly above the maximum bulk frequency has been found. The phonon is only observed on the clean surface and is caused by relaxation of the step atoms. The step phonon is excited by dipole scattering and the necessary dynamic dipole moment is provided by the particular electronic properties of the step atoms. On the flat Ni(111) and Ni(100) surface, nickel surface phonons at certain points of the two-dimensional Brillouin zone have been observed when suitable submonolayer amounts of gases were adsorbed. The adsorbates provide the appropriate coupling with the slow electrons. The same phonon frequencies are observed after adsorbing H2, O2, C2H2, or NO. Sideband- or multiple excitations including the metal phonons are observed. Examples show that the Ni-surface phonons can be excited by both dipole and impact scattering. Implications of these results for the interpretation of vibrational spectra of adsorbed species are outlined.


Specular Reflection Electron Energy Loss Spectroscopy Step Edge Step Atom Electron Energy Loss Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Ibach, D. Bruchmann, Phys. Rev. Lett. 41, 958 (1978)CrossRefGoogle Scholar
  2. 2.
    D.H. Dutton, B.N. Brockhouse, A.P. Miller, Can. J. Phys. 50, 2915 (1972).CrossRefGoogle Scholar
  3. 3.
    H. Hopster, H. Ibach, Surf. Sci. 77, 109 (1978).CrossRefGoogle Scholar
  4. 4.
    G. Allan, Surf. Sci. 85, 37 (1979).CrossRefGoogle Scholar
  5. 5.
    H. Ibach, D. Bruchmann, Phys. Rev. Lett. 44, 36 (1980).CrossRefGoogle Scholar
  6. 6.
    R.E. Allen, G.P. Alldredge, and F.W. de Welte, Phys. Rev. B 4, 1661 (1971).CrossRefGoogle Scholar
  7. 7.
    R.J. Birgeneau, J. Cordes, G. Nolling, H.D.B. Woods, Phys. Rev. 136A, 1359 (1964).CrossRefGoogle Scholar
  8. 8.
    V.R. Velasco, F. Yudurain, Surf. Sci. 85, 107 (1979).CrossRefGoogle Scholar
  9. 9.
    S. Lehwald, J.T. Yates, Jr., and H. Ibach, Proceedings of ECOSS 3, Cannes 22.-26. 9. 1980, p. 221.Google Scholar
  10. 10.
    J.E. Black, private communication.Google Scholar
  11. 11.
    G. Allan, J. Lopez, Surf. Sci. 95, 214 (1980).CrossRefGoogle Scholar
  12. 12.
    S. Andersson, Surf. Sci. 79, 385 (1979).CrossRefGoogle Scholar
  13. 13.
    W. Erley, H. Wagner, and H. Ibach, Surf. Sci. 80, 612 (1979).CrossRefGoogle Scholar
  14. 14.
    Y.J. Chabal, A.J. Sievers, Phys. Rev. Lett. 44, 944 (1980).CrossRefGoogle Scholar
  15. 15.
    S. Lehwald, H. Ibach, Nederl. Tijdschrift v. Vakuumtechniek 18, 71 (1980) (abstract).Google Scholar
  16. 16.
    H. Ibach, S. Lehwald, Proceedings of the 27th Nat. Symposium of the American Vacuum Society, Detroit, 14–17.10.1980, to be published.Google Scholar
  17. 17.
    S.Y. Tong, C.H. Li, and D.L. Mills, Phys. Rev. Lett. 44, 407 (1980).CrossRefGoogle Scholar
  18. 18.
    C.H. Li, S.Y. Tong, and D.L. Mills, Phys Rev. B 21, 3057 (1980).CrossRefGoogle Scholar
  19. 19.
    E. Evans. D.L. Mills, Phys. Rev. B5, 4126 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • S. Lehwald
    • 1
  • H. Ibach
    • 1
  1. 1.Institut für Grenzflächenforschung und VakuumphysikKernforschungsanlage JülichJülichWest Germany

Personalised recommendations