Cell Growth pp 69-81 | Cite as

Cell Fusion and the Introduction of New Information into Temperature-Sensitive Mutants of Mammalian Cells

  • Renato Baserga
  • Christopher Potten
  • P. M. L. Ming
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 38)


Cell fusion occurs in nature spontaneously. Barski et al. (1) were the first ones to demonstrate spontaneous fusion between mammalian cells in culture. However, it is likely that many multi-nucleated giant cells found in normal and pathological conditions (for instance, in measles) may be the result of cell fusion. In cell biology, though, cell fusion has been used to introduce new information, of either phenotypic or genotypic nature into viable mammalian cells. Cell fusion should therefore be discussed together with newer methods for introducing information into mammalian cells which include: manual microinjection, transfection, liposomes, loaded erythrocyte ghosts and permeabilization of membranes. Because of space limitations, we shall omit the last three from the discussion, although liposomes and permeabilized membranes have still unexplored potentials, and we shall take into consideration only: 1) cell fusion; 2) manual microinjection; and 3) transfection.


Cell Fusion Fusion Product Parent Cell Line Permissive Temperature Nonpermissive Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Barski, S. Sorieul and F. Cornefert, J, Nat. Cane. Inst. 26: 1269–1291 (1961).Google Scholar
  2. 2.
    Y. Okada, Exp. Cell Res. 26: 98–107 (1962).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Scheid, M.C. Hsu and P. Schoppin, in: “Introduction of Macromolecules into Viable Mammalian Cells” R. Baserga, C. Croce and G. Rovera, eds., Alan Liss, New York, pp. 187–204 (1980).Google Scholar
  4. 4.
    S. Schneiderman, J.L. Farber and R. Baserga, Somantic Cell Genet. 5: 263–269 (1979).CrossRefGoogle Scholar
  5. 5.
    G. Veomet, J.W. Shay, P. Haugh and D.M. Prescott, Methods Cell Biol. 13: 1–5 (1976).CrossRefGoogle Scholar
  6. 6.
    G.J. Jonak and R. Baserga, Cell 18: 117–123 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Floros and R. Baserga, Cell Biol. Int’l Rpts. 4: 75–82 (1980).CrossRefGoogle Scholar
  8. 8.
    R.M. Liskay, Exp. Cell Res. 114: 69–77 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    R.M. Liskay and D.M. Prescott, Proc. Nat. Acad. Sci. 75: 2873–2877 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    Human Gene Mapping 4, Cytogenetics & Cell Genetics 22: 1–730 (1978).CrossRefGoogle Scholar
  11. 11.
    D.R.W. Edwards, J.B. Taylor, W.F. Wakeling, F.Z. Watts and I.R. Johnston, Cold Spring Harbor Symposium 43: 577–586 (1978).CrossRefGoogle Scholar
  12. 12.
    N.R. Ringertz and R.E. Savage, in: “Hybrids”, Academic Press, New York, pp. 366 (1976).Google Scholar
  13. 13.
    R. Baserga, J. Cell. Physiol. 95: 377–386 (1978).PubMedCrossRefGoogle Scholar
  14. 14.
    L.H. Augenlicht and R. Baserga, Exp. Cell Res. 89: 255–262 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    R. Baserga, C. Croce and G. Rovera, eds. “Introduction of Macromolecules into Viable Mammalian Cells” Alan Liss, New York, pp. 357 (1980).Google Scholar
  16. 16.
    M. Graessmann and A. Graessmann, Proc. Nat. Acad. Sci. 73: 366–370 (1976).PubMedCrossRefGoogle Scholar
  17. 17.
    L. Siminovitch, Cell 7: 1–11 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    E.H.Y. Chu, J. Cell. Physiol. 95: 365–366 (1978).Google Scholar
  19. 19.
    L. Thompson, L. Siminovitch, J. Cell. Physiol. 96: 361–366 (1978).CrossRefGoogle Scholar
  20. 20.
    C. Basilico, J. Cell. Physiol. 95: 365–366 (1978).CrossRefGoogle Scholar
  21. 21.
    M. Cochet-Meilhac and P. Chambon, Biochim. Biophys. Acta. 353: 160–184 (1974).PubMedGoogle Scholar
  22. 22.
    C.J. Ingles, Proc. Natl. Acad. Sci. 75: 405–409 (1978).PubMedCrossRefGoogle Scholar
  23. 23.
    J.R. Pringle, J. Cell. Physiol. 95: 393–406 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Ashihara, S.D. Chang and R. Baserga, J. Cell. Physiol. 96: 15–22 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    J. Floros, T. Ashihara and R. Baserga, Cell Biol. Int’l Rpts 2: 259–269 (1978).CrossRefGoogle Scholar
  26. 26.
    M. Rossini and R. Baserga, Biochemistry 17: 858–863 (1978).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Rossini, S. Baserga, C.H. Huang, C.J. Ingles and R. Baserga, J. Cell Physiol, (in press) (1980).Google Scholar
  28. 28.
    P.M.L. Ming, H.L. Chang and R. Baserga, Proc. Nat. Acad. Sci. 73: 2052–2055 (1976).PubMedCrossRefGoogle Scholar
  29. 29.
    P.M.L. Ming, B. Lange and S. Kit, Cell Biol. Int’l Rpts 3: 169–178 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Renato Baserga
    • 1
  • Christopher Potten
    • 1
  • P. M. L. Ming
    • 1
  1. 1.Fels Research Institute and Department of PathologyTemple University School of MedicinePhiladelphiaUSA

Personalised recommendations