Advertisement

Cell Growth pp 735-747 | Cite as

Clinical Applications of Flow Cytometry

  • Walfried A. Linden
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 38)

Abstract

During the last decade appreciable effort has been undertaken to elucidate the impact of cell kinetic concepts for clinical oncology. As flow cytometry (FCM) has become a valuable and reliable research tool in cell cycle kinetics (for a review see (1,18) and as many of the changes in cell transformation from normal to malignant at least principally can be measured in flow systems, this method has been applied both in cancer diagnostics (as well as estimating of prognosis) and cancer treatment monitoring. It has been demonstrated in previous chapters that flow cytometry is a rapid method for the quantitative determination of biologically important substances in single cells in suspension. In clinical applications of FCM the most important quantitative parameters are nucleic acid content, protein content, cell volume and light scattering and cell surface antigens. The aim of this chapter is to present some typical FCM determinations of those parameters in different fields of interest. A critical discussion of these examples should help to get an answer to the question concerning the present and potential benefit of FCM data for the clinician.

Keywords

Ploidy Level Acute Leukemia Cancer Diagnostics Cervical Smear Sezary Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gray, J.W., Dean, P.N. & Mendelsohn, M.L. (1979) in Flow Cytometry and Sorting, eds. Melamed, M.R., Mullaney,P.F. & Mendelsohn, M.L. ( John Wiley & Sons, New York ), pp. 383–407.Google Scholar
  2. 2.
    Linden, W.A., Ochlich, K., Baisch,. H., Scholz, K.-U., Mauss, H.-J., Stegner, H.-E., Joshi, D.S., Wu, C.T., Koprowska, I. & Nicolini, C. (1979) J. Histochem. Cytochem. 27, 529–535.PubMedCrossRefGoogle Scholar
  3. 3.
    Linden, W.A., Beck, H.-P., Baisch, H., Gebbers, J.-O., Heienbrok, W., Junghanns, P., Roters, M., Scholz, K.-U., Stegner, H.-E., Winkler, R. & Wöllmer, W. (1980) in Flow Cytometry IV, eds. Lindmo, T., Thorud, E. & Laerum, O.D. ( Norwegian University Press, Oslo ), pp. 408–412.Google Scholar
  4. 4.
    Gieseking, F., Baisch, H., Scholz, K.-U., Stegner, H.-E. & Linden, W.A. (1980) Analytical Quant. Cytol. in press.Google Scholar
  5. 5.
    Scholz, K.-U. (1980) Analytical Quant. Cytol. in press.Google Scholar
  6. 6.
    Herman, C.J., Bunnag, B. & Cassidy, M. (1979) in Flow Cytometry and Sorting, eds. Melamed, M.R., Mullaney, P.F. & Mendelsohn, M.L. ( John Wiley & Sons, New York ), pp. 559–572.Google Scholar
  7. 7.
    Heienbrok, W., Roters, M. & Linden, W.A. (1978) in Advances in Neurosurgery 5, eds. Frowein, R.A., Wilcke, O., Karimi-Nejad, A., Brock, M. & Klinger, M. ( Springer, Berlin ), pp. 285–288.Google Scholar
  8. 8.
    Borchers, H. (1981) Thesis, University of Hamburg.Google Scholar
  9. 9.
    Barlogie, B., Göhde, W., Johnston, D.A., Smallwood, L., Schumann, J., Drewinko, B. & Freireich, E.J. (1978) Cancer Res. 38, 3333–3339.PubMedGoogle Scholar
  10. 10.
    Collste, L.G., Darzynkiewicz, Z., Traganos, F., Sharpless, T.K., Devonec, M., Claps, M.L.K., Whitmore Jr., W.F. & Melamed, M.R. (1979) Br. J. Cancer 40, 872–877.PubMedCrossRefGoogle Scholar
  11. 11.
    Roters, M., Lammel, A., Kastendieck, H. & Becker, H. (1980) in Flow Cytometry IV, eds. Lindmo, T., Thorud, E. & Laerum, O.D. ( Norwegian University Press, Oslo ), pp. 397–401.Google Scholar
  12. 12.
    Atkin, N.B. & Kay, R. (1979) Br. J. Cancer 40, 210–221.PubMedCrossRefGoogle Scholar
  13. 13.
    Düllmann, J., Wulfhekel, U., Linden, W.A., Beck, H.-P. & Hausmann, K. (1980) Blut 324, 1–9.Google Scholar
  14. 14.
    Göhde, W., Schumann, J., Büchner, Th., Otto, F. & Barlogie, B. (1979) in Flow Cytometry and Sorting, eds. Melamed, M.R., Mullaney, P.F. & Mendelsohn, M.L. ( John Wiley & Sons, New York ), pp. 599–620.Google Scholar
  15. 15.
    Arlin, Z.A., Fried, J. & Clarkson, B.D. (1979) in Flow Cytometry and Sorting, eds. Melamed, M.R., Mullaney, P.F. & Mendelsohn, M. L. ( John Wiley & Sons, New York ), pp. 583–597.Google Scholar
  16. 16.
    Dosik, G.M., Barlogie, B., Smith, T.L., Gehan, E.A., Keating, M. J., McCredie, K.B. & Freireich, E.J. (1980) Blood 55, 474–482.PubMedGoogle Scholar
  17. 17.
    Jannossy, G., Roberts, M.M., Capellaro, D., Greaves, M.F. & Francis, G.E. (1978) in Immunofluorescence and Related Staining Techniques, eds. Knapp, W., Holubar, K. & Wick, G. ( Elsevier/ North Holland Biomedical Press, Amsterdam ), pp. 111–122.Google Scholar
  18. 18.
    C. Nicolini, in Advances in Neuroblastoma Research, ed. A. Raven, Press. New York, 271–286 (1980).Google Scholar
  19. 19.
    Vonderheid, E. S. Fang, Helfrich, M., Abraham, S., and Nicolini, C., Journal of Investigative Dermatology, 76, 28–37 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    Nicolini, C., Linden W., Zietz, S. and Wu, C., Nature, 270, 163–176 (1977).CrossRefGoogle Scholar
  21. 21.
    Zietz, S., Grattarola, M. Desaive, C., and Nicolini, C., Cell Tissue Kinetics, 13, 473–484 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Walfried A. Linden
    • 1
  1. 1.Institute of Biophysics and Radiation BiologyUniversity of HamburgHamburg 20Germany

Personalised recommendations