Advertisement

Cell Growth pp 653-671 | Cite as

Cell Transformation by RNA Sarcoma Virus

  • Heinz Bauer
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 38)

Abstract

Autonomous cell proliferation appears to be an essential characteristic of most neoplastic cells. Present knowledge of the biochemical and biological properties by which the phenotype of tumor cells may be defined, is largely based on experimental studies in vitro, in which normal cells are converted to a transformed state by virus infection. This transformed state in vitro appears to correlate with the phenotype of tumor cells in vivo. Numerous viruses with the capacity to transform cells have been identified and genetic analyses have revealed that many of these bear genetic information, generally referred to as an onc-gene, which is directly responsible for transformation. These viral onc-genes have proven to be powerful tools in the study of the molecular processess which initiate and maintain malignant cell growth (see CSH Symp. 44, 1980).

Keywords

Cell Transformation Cell Surface Antigen Rous Sarcoma Virus Chick Embryo Fibroblast Oncofetal Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambros, V. R., Chen, L. B., and Buchanan, J. M., 1975, Surface ruffles as markers for studies of cell transformation by Rous sarcoma virus. Proc. Natl. Acad. Sci.USA 72: 3144.PubMedCrossRefGoogle Scholar
  2. Anderson, G. R., Marotti, K. R., and Whitacker-Dowling, P. A., 1979, A candidate rat-specific gene product of the Kirsten murine sarcoma virus. Virology 99: 31.PubMedCrossRefGoogle Scholar
  3. Balk, S. D., Plimeni, P. I., Hoon, B. S., Le Stourgeon, D. N., and Mitchen, R. S., 1979, Proliferation of Rous sarcoma virus-infected, but not of normal, chicken fibroblasts in a medium of reduced calcium and magnesium concentration. Proc. Natl. Acad. Sci. USA 76: 3913.PubMedCrossRefGoogle Scholar
  4. Barnekow, A., Boschek, C. B., Ziemiecki, A., and Bauer, H., 1980, Detection of the src-gene product pp60src and its associated protein kinase on the surface of Roussarcoma virus-transformed cells.Biochem. Soc. Transactions 8: 735.Google Scholar
  5. Barnekow, A., Bauer, H., Boschek, C. B., Friis, R. R., and Ziemiecki, A., 1981, Rous sarcoma virus transformation: Action of the src gene product, in: “International Cell Biology 1980/81” (H. G. Schweiger, ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 457.CrossRefGoogle Scholar
  6. Bauer, H., Hayami, M., Ignjatovic, J., Rübsamen, H., Graf, T., and Friis, R. R., 1979, On the origin and in vivo immunogenicity of avian sarcoma cell surface antigens. in: “Avian RNA-Tumor Viruses” Piccin-Medical Books. (S. Barlati, C. De Guili-Morghen, eds. ), pp. 252.Google Scholar
  7. Bauer, H., and Fleischer, B., 1980, The immunobiology of avian RNA tumor virus-induced cell surface antigens, in: “Mechanism of Immunity to Virus-Induced Tumors” Marcel Dekker, Inc., New York, in pressGoogle Scholar
  8. Bauer, H., and Yoshikawa, 1980, Oncofetal antigens as markers for retrodifferentiation in malignant transformation, in: “Cold Spring Harbor Conferences on Cell Proliferation” Vol. 7, pp. 1231.Google Scholar
  9. Becker, D., Kurth, R., Critchley, D., Friis, R. R., and Bauer, H., 1977, Distinguishable transformation defective phenotypes among temperature sensitive mutants of Rous sarcoma virus. J. Virol. 21: 1042.PubMedGoogle Scholar
  10. Bishop, J. M., 1978, Retroviruses. Ann. Rev. Biochem. 47: 35.PubMedCrossRefGoogle Scholar
  11. Blomberg, J., Reynolds Jr., F. H., Van de Ven, W. J. M., and Stephenson, J. R., 1980, Abelson murine leukemia virus transformation involves loss of epidermal growth factor-binding sites. Nature 286: 504.PubMedCrossRefGoogle Scholar
  12. Boettiger, D., Roboy, J., Brumbaugh, J., Biehl, J., and Holtzer, H., 1977; Transformation of chicken embryo retinal melanoblasts by a temperature-sensitive mutant of Rous sarcoma virus. Cell 11: 881.PubMedCrossRefGoogle Scholar
  13. Boschek, C. B., Jockusch, B. M., Friis, R. R., Back, R., and Bauer, H., 1979, Morphological alterations to the cell surface and cytoskeleton in neoplastic transformation. Beitr. elektronenmikroskop. Direktabb. Oberfl. 12: 47.Google Scholar
  14. Boschek, C. B., Jockusch, B. M., Friis, R. R., and Back, R., 1981, Early changes in the distribution and organization of microfilament proteins during cell transformation. Cell 24: in pressGoogle Scholar
  15. Brugge, J. S., and Erikson, R. L., 1977, Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269: 346.PubMedCrossRefGoogle Scholar
  16. Brugge, J. S., Erikson, E., Collett, M. S., 1978, Peptide analysis of the transformation-specific antigen from avian sarcoma virus-transformed cells. J. Virol. 26: 773.PubMedGoogle Scholar
  17. Calothy, G., and Pessac, B., 1976, Growth stimulation of chick embryo neuro-retinal cells infected with RSV: relationship to viral replication and morphological transformation. Virology 71: 336.PubMedCrossRefGoogle Scholar
  18. Carpenter, G., and Cohen, S., 1979, Epidermal growth factor. Ann. Rev. Biochem. 48: 193.PubMedCrossRefGoogle Scholar
  19. Carroll, R. C., Ash, J. F., Vogt, P. K., and Singer, S. J., 1978, Reversion of transformed glycolysis to normal by inhibition of protein synthesis in rat kidney cells infected with temperature-sensitive mutants of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 75: 5015.PubMedCrossRefGoogle Scholar
  20. Cohen, S., 1976; Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature 264: 26.PubMedCrossRefGoogle Scholar
  21. Collett, M. S., and Erikson, R. L., 1978, Protein kinase activity associated with the avian sarcoma virus src gene product. Proc. Natl. Acad. Sci. USA 75: 2021.PubMedCrossRefGoogle Scholar
  22. Collett, M. S., Brugge, J. S., and Erikson, R. L., 1978, Characterization of a normal avian cell protein related to the avian sarcoma virus transforming gene product. Cell 15: 1363.PubMedCrossRefGoogle Scholar
  23. Collett, M. S., Brugge, J. S., Erikson, R. L., Lau, A. F., Kryzek, R. A., and Faras, A. J., 1979, The src gene product of transformed and morphologically reverted ASV-infected mammalian cells. Nature 281: 195.PubMedCrossRefGoogle Scholar
  24. Cold Spring Harbor Symposis on Quantitative Biology Vol. 44, 1980.Google Scholar
  25. Cooper, G. M., Okenquist, S., and Silverman, L., 1980, Transforming activity of DNA of chemically transformed and normal cells. Nature 286: 418.CrossRefGoogle Scholar
  26. Courtneidge, S. A., Levinson, A. D., and Bishop, J. M., 1980, The protein encoded by the transforming gene of avian sarcoma virus (pp60src) and a homologous protein in normal cells (pp60 proto-sarc) are associated with the plasma membrane. Proc. Natl. Acad. Sci. USA 77: 3783.PubMedCrossRefGoogle Scholar
  27. Critchley, D. R., 1979, Glycolipids as membrane receptors important in growth regulation, in: “Surfaces of Normal and Malignant Cells” ( R. O. Hynes, ed.), John Wiley and Sons, Chichester, 1979, pp. 63.Google Scholar
  28. Durham, A. C. H., 1978, The roles of small ions, especially calcium, in virus disassembly, takeover, and transformation. Biomedicine 28: 307.PubMedGoogle Scholar
  29. Edelmann, G. M., and Yahara, I., 1976, Temperature-sensitive changes in surface modulation assembles of fibroblasts transformed by mutants of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 73: 2047.CrossRefGoogle Scholar
  30. Erikson, E., Collett, M. S., and Erikson, R. L., 1978, In vitro synthesis of a functional avian sarcoma virus transforming-gene product. Nature 274: 919.PubMedCrossRefGoogle Scholar
  31. Erikson, R. L., Collett, M. S., Erikson, E., and Purchio, A. F., 1979, Evidence that the avian sarcoma virus trans-forming product is a cAMP-independent protein kinase. Proc. Natl. Acad. Sci. USA 76: 6260.PubMedCrossRefGoogle Scholar
  32. Erikson, E., and Erikson, R. L., 1980, Identification of a cellular protein substrate phosphorylated by the avian sarcoma virus-transforming gene product. Cell 21: 829.PubMedCrossRefGoogle Scholar
  33. Fiszman, M. Y., and Fuchs, P., 1975, Temperature-sensitive expression of differentiation in transformed myeloblasts. Nature 254: 429.PubMedCrossRefGoogle Scholar
  34. Friis, R. R., Schwarz, R. T., and Schmidt, M. F. G., 1977, Phenotype of Rous sarcoma virus-transformed fibroblasts. An argument for a multifunctional src gene product. Med. Microbiol. Immunol. 164: 155.PubMedCrossRefGoogle Scholar
  35. Friis, R. R., 1978, Temperature-sensitive mutants of avian RNA tumor viruses: A review. Current Topics in Microbiol, and Immunol. Vol. 79: 261.CrossRefGoogle Scholar
  36. Friis, R. R., Jockusch, B. M., Boschek, C. B., Ziemiecki, A., Riibsamen, H., and Bauer, H., 1980, Transformation-defective, temperature-sensitive mutants of Rous sarcoma virus have a reversibly defective src-gene product. Cold Spring Harbor Symp. on Quant. Biol. Vol. 44: 1007.CrossRefGoogle Scholar
  37. Gelderblom, H., Bauer, H., and Graf, T., 1972, Cell surface antigen induced by avian RNA tumor viruses: Detection by immunoferritin technique. Virology 47: 416.PubMedCrossRefGoogle Scholar
  38. Holtzer, H., Biehl, J., Yeoh, G., Meganathan, R., and Kaji, K., 1975, Effect of oncogenic virus on muscle differentiation. Proc. Natl. Acad. Sci. USA 72: 4051.PubMedCrossRefGoogle Scholar
  39. Hunter, T., Sefton, B. M., 1980, Transforming gene product of Rous sarcoma virus phosphorylates tyrosin. Proc. Natl. Acad. Sci. USA 77: 1311.PubMedCrossRefGoogle Scholar
  40. Hynes, R. O., 1979, Proteins and glycoproteins, in: “Surfaces of Normal and Malignant Cells”, ( R. O. Hynes, ed.), John Wiley and Sons, Chichester, 1979, pp. 103.Google Scholar
  41. Ignjatovic, J., Riibsamen, H., Hayami, M., and Bauer, H., 1978, Rous sarcoma virus-transformed avian cells express four different cell surface antigens that are distinguishable by a cell-mediated cytotoxicity-blocking test. J. Immunol. 120: 1663.PubMedGoogle Scholar
  42. Johnson, M. A., and Weber, M. J., 1979, Potassium fluxes and ouabain binding in growing, density-inhibited and Rous sarcoma-virus transformed chicken embryo cells. J. Cell. Physiol. 101: 89.PubMedCrossRefGoogle Scholar
  43. Kamine, J., and Rubin, H., 1977, Coordinate control of collagen synthesis and cell growth in chick embryo fibroblasts and the effect of viral transformation on collagen synthesis. J. Cell. Physiol. 92: 1.PubMedCrossRefGoogle Scholar
  44. Karess, R. E., Hayward, W. S., and Hanafusa, H., 1979, Cellular information in the genome of recovered avian sarcoma virus directs the synthesis of transforming proteins. Proc. Natl. Acad. Sci. USA 76: 3154.PubMedCrossRefGoogle Scholar
  45. Krueger, J. G., Wang, E., and Goldberg, A. R., 1980a, Evidence that the src gene product of Rous sarcoma virus is membrane associated. Virology 101: 25.PubMedCrossRefGoogle Scholar
  46. Krueger, J. G., Wang, E., Garber, E. A., and Goldberg, A. R., 1980b, Differences in intracellular location of pp60src in rat and chicken cells transformed by Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 77: 4142.PubMedCrossRefGoogle Scholar
  47. Kryceve, C., Vigier, P., and Barlati, S., 1976, Transformation enhancing factor(s) produced by virus-transformed and established cells. Int. J. Cancer 17: 370.PubMedCrossRefGoogle Scholar
  48. Kurth, R., and Bauer, H., 1972, Cell surface antigens induced by avian RNA tumor viruses: Detection by a cytotoxic microassay. Virology 47: 426.PubMedCrossRefGoogle Scholar
  49. Lawrence, D. A., and Jullien, P., 1980, Hexose uptake enhancing factor released from Rous sarcoma cells. J. Cell. Physiol. 102: 245.PubMedCrossRefGoogle Scholar
  50. Levinson, A. D., Oppermann, H., Levintow, L., Varmus, H. E., and Bishop, J. M., 1978, Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15: 561.PubMedCrossRefGoogle Scholar
  51. Means, A. R., and Dedman, J. R., 1980, Calmodulin - an intracellular calcium receptor. Nature 285: 73.PubMedCrossRefGoogle Scholar
  52. Moyer, M. P., Garry, R. F., Moyer, R. C., and Waite, M. R. F., 1980, Intracellular ion concentrations and the transformed phenotype. Europ. J. Cell Biol. 22: 526.Google Scholar
  53. Nicolson, G. L., 1976a, Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over cell surface components. Biochim. Biphys. Acta 457: 57.Google Scholar
  54. Nicolson, G. L., 1976b, Trans-membrane control of the receptors on normal and tumor cells. II. Surface changes associated with transformation and malignancy. Biochim. Biophys. Acta 458: 1PubMedGoogle Scholar
  55. Pacifici, M., Boettiger, D., Roby, K., and Holtzer, H., 1977, Transformation of chondroblasts by Rous sarcoma virus and synthesis of sulfated proteoglycan matrix. Cell 11: 981.CrossRefGoogle Scholar
  56. Poste, G., and Flood, M. K., 1979, Cells transformed by temperature-sensitive mutants of avian sarcoma virus cause tumors in vivo at permissive and nonpermissive temperatures. Cell 17: 789.PubMedCrossRefGoogle Scholar
  57. Preskott, D. M., 1976, The cell cycle and the control of cellular reproduction. Adv. Genetics 18: 99.CrossRefGoogle Scholar
  58. Presek, P., Glossmann, H., Eigenbrodt, E., Schoner, W., Rübsamen, H., Friis, R. R., and Bauer, H., 1980, Similarities between a phosphoprotein (pp60src)-associated protein kinase of Rous sarcoma virus and a cylic adenosine 3′:5′-monophosphate-independent protein kinase that phosphorylates pyruvate kinase type M2. Cancer Res. 40: 1733.PubMedGoogle Scholar
  59. Quigley, J. P., 1979, Proteolysis enzymes of normal and malignant cells, in: “Surface of Normal and Malignant Cells” ( R. O. Hynes, ed.), John Wiley and Sons, Chichester, 1979, pp. 247.Google Scholar
  60. Radke, K., Gilmore, T., and Martin, G. S., 1980, Transformation by Rous sarcoma virus: a cellular substrate for transformation-specific protein phosphorylation contains phosphotyrosine. Cell 21: 821.PubMedCrossRefGoogle Scholar
  61. Roby, K., Boettiger, D., Pacifici, M., and Holtzer, H., 1976, Effects of Rous sarcoma virus on the synthesis programs of chondroblasts and retinal melanoblsts. Am. J. Anat. 147: 401.PubMedCrossRefGoogle Scholar
  62. Rohrschneider, L. R., Eisenman, R. N., Leitch, C. R., 1979, Identification of a Rous sarcoma virus transformation-related protein in normal avian and mammalian cells. Proc. Natl. Acad. Sci. USA 76: 4479.PubMedCrossRefGoogle Scholar
  63. Rohrschneider, L. R., 1980, Adhesion paques of Rous sarcoma virus-transformed cells contain the src gene product. Proc. Natl. Acad. Sci. USA 77: 3514.PubMedCrossRefGoogle Scholar
  64. Rowe, D. W., Moen, R. C., Davidson, J. M., Byers, P. H., Bornstein, P., and Palmiter, R. D., 1978, Correlation of procollagen mRNA levels in normal and transformed chick embryo fibroblasts with different rates of procollagen synthesis. Biochem. 17: 1581.CrossRefGoogle Scholar
  65. Rubin, H., 1970, Overgrowth stimulating factor released from Rous sarcoma virus cells. Science 167: 1271.PubMedCrossRefGoogle Scholar
  66. Rübsamen, H., Friis, R. R., and Bauer, H., 1979, Src gene product from different strains of avian sarcoma virus: Kinetics and possible mechanism of that inactivation of protein kinase activity from cells infected by transformation-defective, temperature-sensitive mutant and wild-type virus. Proc. Natl. Acad.Sci. USA 76: 967.PubMedCrossRefGoogle Scholar
  67. Sefton, B. M., Hunter, T., Beemon, K., and Eckhart, W., 1980, Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell 20: 807.PubMedCrossRefGoogle Scholar
  68. Singer, S. J., 1974, Molecular biology of cellular membranes with applications to immunology. Adv. Immunol. 19: 1.PubMedCrossRefGoogle Scholar
  69. Stehelin, D., Varmus, H. E., Bishop, J. M., and Vogt, P. K., 1976, DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260: 170.PubMedCrossRefGoogle Scholar
  70. Todaro, G. J., De Larco, J. E., and Cohen, S., 1976, Transformation by murine and feline sarcoma viruses specifically blocks binding of epidermal growth factor to cells. Nature 264: 26.PubMedCrossRefGoogle Scholar
  71. Todaro, G. J., and De Larco, J. E., 1978, Growth factors produced by sarcoma virus-transformed cells. Cancer Res. 38: 4147.PubMedGoogle Scholar
  72. Wang, E., and Goldberg, A. R., 1976, Changes in microfilament organization of surface topography upon transformation of chick embryo fibroblasts with Rous sarcoma virus. Proc. Natl. Acad. Sci. USA 73: 4065.PubMedCrossRefGoogle Scholar
  73. Wang, L.-H., Snyder, P., Hanafusa, T., and Hanafusa, H., 1980, Evidence for the common origin of viral and cellular sequences involved in sarcomagenic transformation. J. Virol. 35: 52.PubMedGoogle Scholar
  74. Weber, M. J., 1973, Hexose transport in normal and in Rous sarcoma virus-transformed cells. J. Biol. Chem. 248: 2978.PubMedGoogle Scholar
  75. Weber, M., and Friis, R. R., 1979, Dissociation of transformation parameter using temperature-conditional mutants of Rous sarcoma virus. Cell 16: 25.PubMedCrossRefGoogle Scholar
  76. Willingham, M. C., Jay, G., and Pastan, I., 1979, Localization of the ASV src gene product to the plasma membrane of transformed cells by electron microscopic immunocytochemistry. Cell 18: 125.PubMedCrossRefGoogle Scholar
  77. Yoshikawa, Y., Ignjatovic, J., and Bauer, H., 1979, Tissue-specific expression of onco-fetal antigens during embryogenesis. Differentiation 15: 41.PubMedCrossRefGoogle Scholar
  78. Ziemiecki, A., and Friis, R. R., 1980, Phosphorylation of pp60src and the cycloheximide insensitive activation of the pp60src-associated kinase activity of transformation-defective temperature-sensitive mutants of Rous sarcoma virus. Virology 106: 391.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Heinz Bauer
    • 1
  1. 1.Institut für VirologieJustus-Liebig-UniversitätGiessenDeutschland

Personalised recommendations