Advertisement

Cell Growth pp 619-651 | Cite as

Cell Growth and Nuclear DNA Increase by Endoreduplication and Differential DNA Replication

Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 38)

Abstract

Somatic variations in the amount of nuclear DNA due to somatic polyploidization and differential DNA replication are events, which occur much more frequently than thought by many biologists and biochemists. This might be, in part, because there is particular interest in the genetic information of the DNA rather than on its “nucleotypical” (1) or “nucleoskeletal” effects (2). Actually, it is widely believed that the genome is an extremely stable constant, and that the genetic information stored in the nucleus is identical in all cells of an individual (dogma of DNA constancy). Classical cytologists, however, discovered already in 1939 the process of endomitosis (3), and somewhat later that of DNA endoreduplication (4). Recently, it was shown in a review that some kind of somatic polyploidy can be found in nearly every taxon investigated (5), and that often up to 70% of the cells of an organism may be polyploid (6). Hence, we should no longer ignore this fact, but search for the biological significance of somatic DNA increase.

Keywords

Silk Gland Mitotic Cell Cycle Antipodal Cell Phaseolus Coccineus Endosperm Haustorium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D. Bennett, Brookhaven Symp. Biol., 25: 344–366 (1973).Google Scholar
  2. 2.
    T. Cavalier-Smith, J. Cell Sci., 34: 247–278 (1978).PubMedGoogle Scholar
  3. 3.
    L. Geitler, Chromosoma, 1: 1–22 (1939).CrossRefGoogle Scholar
  4. 4.
    A. Levan and T.S. Hauschka, J. Natl. Cancer Inst. 14: 1–43 (1953).PubMedGoogle Scholar
  5. 5.
    W. Nagl, “Endopolyploidy and Polyteny in Differentiation and Evolution”, North-Holland, Amsterdam (1978).Google Scholar
  6. 6.
    B. Frisch and W. Nagl, Plant Syst. Evol., 131: 261–276 (1979).CrossRefGoogle Scholar
  7. 7.
    B. Wright, Trends Biochem. Res., 4: N110–N111 (1979).CrossRefGoogle Scholar
  8. 8.
    W. Nagl, in: “Genome and Chromatin: Organization, Evolution, Function”, W. Nagl, V. Hemleben and F. Ehrendorfer, editors, p. 3–25, Springer, Vienna-New York (1979).CrossRefGoogle Scholar
  9. 9.
    F. D’Amato, Caryologia, 17: 41–52 (1964).Google Scholar
  10. 10.
    E. Tschermak-Woess, in: Handbuch der Allgemeinen Pathologie, H.W. Altmann, et al., editors, p. 569–625, Springer, Berlin-Heidelberg-New York (1971).Google Scholar
  11. 11.
    F. D’amato, “Nuclear Cytology in Relation to Development” Cambridge University Press, New York (1977).Google Scholar
  12. 12.
    W. Nagl, Ann. Rev. Plant Physiol., 27: 39–69 (1976).CrossRefGoogle Scholar
  13. 13.
    V. Ya Brodsky, I.V. Uryvaeva, “Cell Polyploidy: Its Relation to Growth and Differentiation” Academic Press, New York (1977).Google Scholar
  14. 14.
    W. Nagl, in: “Encyclopedia of Plant Physiology”, Vol. 16, B. Parthier and D. Boulter, editors, Springer, Berlin- Heidelberg-New York (in press)Google Scholar
  15. 15.
    K. Carniel, Oesterr.Bot.Z., 110: 145–176 (1963).CrossRefGoogle Scholar
  16. 16.
    V.Ya. Brodsky and I.V. Uryvaeva, Intern. Rev. Cytol. 50: 275–332 (1977).CrossRefGoogle Scholar
  17. 17.
    W. Nagl, Zelkern und Zellzyklen. Ulmer, Stuttgart (1976).Google Scholar
  18. 18.
    E. Heitz, Ber. Deutsch. Bot. Ges., 47: 274–284 (1929).Google Scholar
  19. 19.
    L. Geitler, Ergebn. Biol., 18: 1–54 (1941).CrossRefGoogle Scholar
  20. 20.
    P.W. Barlow, Protoplasma, 90: 381–391 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    W. Nagl, Protoplasma, 91: 389–407 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Buiatti, in: “Plant Cell, Tissue, and Organ Culture”, J. Reinert and S. Bajaj, editors, p. 358–374, Springer, Berlin-Heidelberg-New York (1977).Google Scholar
  23. 23.
    W. Nagl, V. Hemleben and F. Ehrendorfer, editors “Genome and Chromatin: Organization, Evolution and Function” Springer, Vienna-New York (1979).CrossRefGoogle Scholar
  24. 24.
    W. Nagl, Progr. Bot. 39: 132–152 (1977).Google Scholar
  25. 25.
    A. Lima-de-Faria, Cold Spring Harb. Symp. Quant. Biol., 38: 559–571 (1974).PubMedCrossRefGoogle Scholar
  26. 26.
    W. Nagl, in: “Tissue Culture and Plant Science 1974”, H.E. Street, editor, p. 19–42, Academic Press, New York, (1974).Google Scholar
  27. 27.
    W. Nagl, Cytobios, 5: 145–154 (1972).Google Scholar
  28. 28.
    W. Nagl, J. Hendon and W. Rucker, Cell Diff., 1: 229–237 (1972).CrossRefGoogle Scholar
  29. 29.
    D. Schweizer and W. Nagl, Exptl. Cell Res., 98: 411–423 (1976).PubMedCrossRefGoogle Scholar
  30. 30.
    W. Nagl and W. Rucker, Nucleic Acids Res., 3: 2033–2039 (1976).PubMedGoogle Scholar
  31. 31.
    A. Brito-da-Cunha, C. Pavan, J.S. Morgante and M.C. Garrido, Genetics Suppl., 61: 335–349 (1969).Google Scholar
  32. 32.
    L. Walter, Chromosoma, 41: 327–360 (1973).PubMedCrossRefGoogle Scholar
  33. 33.
    J. Balsamo, J.M. Hierro, and F.J.S. Lara, Cell Diff., 2: 119–130 (1973).CrossRefGoogle Scholar
  34. 34.
    R.J. Britten, E.H. Davidson, Science, 165: 349–357 (1969).PubMedCrossRefGoogle Scholar
  35. 35.
    M.F. Bonaldo, R.V. Santelli, and F.J.S. Lara, Cell, 17: 827–833 (1979).PubMedCrossRefGoogle Scholar
  36. 36.
    C.M. Strom, and A. Dorfman, Proc. Natl. Acad. Sci. US, 73: 3428–3432 (1976).CrossRefGoogle Scholar
  37. 37.
    C.M. Strom, M. Moscona, and A. Dorfman, Proc. Natl. Acad. Sci. US, 75: 4451–4454 (1978).CrossRefGoogle Scholar
  38. 38.
    F.W. Alt, R.E. Kellems, J.R. Bertino and R.T. Schimke, J. Biol. Chem. 253: 1357–1370 (1978).PubMedGoogle Scholar
  39. 39.
    R.J. Kaufman, P.C.. Brown, and R.T. Schimke, Proc. Natl. Acad. Sci. US, 76: 5669–5673 (1979).CrossRefGoogle Scholar
  40. 40.
    B.J. Dolnick, R.J. Berenson, J.R. Bertino, R.J. Kaufman, J.H. Nunberg and R.T. Schimke, J. Cell Biol., 83: 394–402 (1979).PubMedCrossRefGoogle Scholar
  41. 41.
    A.C. Spradling, and A.P. Mahowald, Proc. Natl. Acad. Sci. US, 77: 1080–1100 (1980).CrossRefGoogle Scholar
  42. 42.
    W. Nagl, The Nucleus, 20: 10–27 (1977).Google Scholar
  43. 43.
    W. Nagl, Chromosomes Today, 6: 151–152 (1977).Google Scholar
  44. 44.
    W. Nagl, Nature, 261: 614–615 (1976).PubMedCrossRefGoogle Scholar
  45. 45.
    P.W. Barlow, Protoplasma, 90: 381–391 (1976).PubMedCrossRefGoogle Scholar
  46. 46.
    L.S. Evans, J. Van’t Hof, Amer. J. Bot., 62: 1060–1064 (1975).CrossRefGoogle Scholar
  47. 47.
    W. Nagl, Z. Pflanzenphysiol., 95: 283–314 (1979).Google Scholar
  48. 48.
    C.R. Partanen, Intern. Rev. Cytol., 15: 215–243 (1963).CrossRefGoogle Scholar
  49. 49.
    Th. Butterfass, Mittlg. Max-Planck-Ges., 1: 47–58 (1966).Google Scholar
  50. 50.
    W.F. Doolittle, and C. Spaienza, Nature, 284: 601–603 (1980).PubMedCrossRefGoogle Scholar
  51. 51.
    L.E. Orgel and F.C.H. Crick, Nature, 284: 604–607 (1980).PubMedCrossRefGoogle Scholar
  52. 52.
    S.A. Endow, and J.G. Gall, Chromosoma, 50: 175–192 (1975).PubMedCrossRefGoogle Scholar
  53. 53.
    W. Nagl, Z. Pflanzenphysiol., 85: 45–51 (1977).Google Scholar
  54. 54.
    P.J. Gartner, and W. Nagl, Planta xx,xx–xx (1980).Google Scholar
  55. 55.
    C.A. Nciolini, in: Chromatin Structure and Function, C.A. Nicolini, editor, p. 613–666, Plenum Press, New York (1979).CrossRefGoogle Scholar
  56. 56.
    I. Prigogine, “Thermodynamics of Irreversible Processes” Wiley-Interscience, New York (1955).Google Scholar
  57. 57.
    M. Eigen, and P. Schuster, “The Hypercycle” Springer, Berlin-Heidelberg-New York (1978).Google Scholar
  58. 58.
    P.O.P. Ts’o, “The Molecular Biology of the Mammalian Genetic Apparatus” North-Holland, Amsterdam (1979).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • W. Nagl
    • 1
  1. 1.Department of BiologyUniversity of KaiserslauternFederal Republic of Germany

Personalised recommendations