Cell Growth pp 521-534 | Cite as

The Organization of Genes in Chromosomes in Some Ciliated Protozoa

  • David M. Prescott
  • Marshal T. Swanton
  • Robert E. Boswell
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 38)


Eukaryotic species appear to contain much more DNA in their genomes than can be reasonably accounted for in genetic terms. Mammals, for example, commonly contain DNA sequence complexities of ∿109 base pairs (BP). Assuming about 103 BP are required to code for an average size polypeptide, then such an organism could contain ∿106 genes. This would be at least twenty times more coding capacity than the highest estimates for RNA complexities would require. However, in addition to the amino acid coding capacity many eukaryotic genes have been shown to have one or more transcribed intervening sequences (introns). The gene for ovalbumin, for example, would require only 1,872 nucleotides to code for the structural gene, but the presence of seven intervening sequences expand the “gene” to 7.6 kilobases (KB). The gene for dihydrofolate reductase has been shown to span 42 KB. Thus, at least some of this extra DNA could be accounted for by introns.


Polytene Chromosome Inverted Terminal Repeat Vesicle Stage Inverted Terminal Repeat Sequence Nontranscribed Spacer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ammermann, D. (1964) Naturwissenschaftern 51, 249.CrossRefGoogle Scholar
  2. 2.
    Ammermann, D. (1965) Ehrenberg. Arch. Protistenk 108, 109–152.Google Scholar
  3. 3.
    Kloetzel, J.A. (1970) J. Cell Biol. 47, 395–407.PubMedCrossRefGoogle Scholar
  4. 4.
    Prescott, D.M., Bostock, C.J., Murti, K.G., Lauth, M.R. & Gamow, E. (1971) Chromosoma 34, 355–366.CrossRefGoogle Scholar
  5. 5.
    Swanton, M.T., Heumann, J.M. & Prescott, D.M. (1980) Chromosoma 77, 217–227.PubMedCrossRefGoogle Scholar
  6. 6.
    Bostock, C.J. & Prescott, D.M. (1972) Proc. Natl. Acad. Sci. USA 69, 139–142.CrossRefGoogle Scholar
  7. 7.
    Spear, B.B. & Lauth, M.R. (1976) Chromosoma 54, 1–13.PubMedCrossRefGoogle Scholar
  8. 8.
    Lauth, M.R., Spear, B.B., Heumann, J. & Prescott, D.M. (1976) Cell 7, 67–74.PubMedCrossRefGoogle Scholar
  9. 9.
    Prescott, D.M. & Murti, K.G. (1973) Cold Spring Harbor Symp. Quant. Biol. 38, 609–618.CrossRefGoogle Scholar
  10. 10.
    Wesley, R.D. (1975) Proc. Natl. Acad. Sci. USA 72, 678–682.CrossRefGoogle Scholar
  11. 11.
    Klobutcher, L.A., Swanton, M.T., Donini, P. & Prescott, D.M. (1981) Proc. Natl. Acad. Sci. USA, in press.Google Scholar
  12. 12.
    Rae, P.M.M. & Spear, B.B. (1978) Proc. Natl. Acad. Sci. USA 75, 4992–4996.CrossRefGoogle Scholar
  13. 13.
    Boswell, R.E., unpublished results.Google Scholar
  14. 14.
    Elsevier, S.M., Lipps, H.J. & Steinbruck, G. (1978) Chromosoma 69, 291–306.PubMedCrossRefGoogle Scholar
  15. 15.
    Kaine, B.P. & Spear, B.B. (1980) Proc. Natl. Acad. Sci. USA 77, 5336–5340.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • David M. Prescott
    • 1
  • Marshal T. Swanton
    • 1
  • Robert E. Boswell
    • 1
  1. 1.Department of Molecular, Cellular and Developmental BiologyUniversity of ColoradoBoulderUSA

Personalised recommendations