Cell Growth pp 411-454 | Cite as

Chromatin Structure, Histone Modifications and the Cell Cycle

  • E. M. Bradbury
  • H. R. Matthews
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 38)


Credit for the recent major advances in our understanding of chromatin structure must be attributed largely to the finding by Hewish and Burgoyne (1) that Ca++ activated endogenous nucleases preferentially cleaved the DNA in rat liver chromatin at sites separated by about 200 base pairs (bp)(2). This led to their proposal that chromatin was a simple repeating subunit structure. It also led to the research industry that has built up on the uses of different nucleases as biochemical probes of chromatin structure and on the additional use of staphylococcal(s.) nuclease in biochemical procedures for the preparation of large amounts of the chromatin subunit, the nucleosome, oligomers of nucleosomes and large pieces of chromatin.


Histone Modification Chromatin Structure Phosphate Content Core Particle Chromosome Condensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Hewish and L.A. Burgoyne, Chromatin substructure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease, Biochem. Biophys. Res. Comm. 52: 504–510 (1973)PubMedCrossRefGoogle Scholar
  2. 2.
    L.A. Burgoyne, D.R. Hewish and J. Mobbs, Mammalian chromatin substructure studies with the calcium-magnesium endonuclease and two dimensional polyacramide gel electrophoresis, Biochem. J. 143: 67–72 (1974).PubMedGoogle Scholar
  3. 3.
    J.D. McGhee and G. Felsenfeld, Nucleosome structure, Ann. Rev. Biochem. 49: 1115–1156 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    J.L. Compton, M. Bellard and P. Chambon, Biochemical evidence of variability in the DNA repeat length in the chromatin of higher eukaryotes, Proc. Nat. Acad. Sci. U.S.A. 73: 4382–4386 (1976).CrossRefGoogle Scholar
  5. 5.
    M. Noll and R. Kornberg, Action of micrococcal nuclease on chromatin and the location of histone H1, J. Mol. Biol. 109:393–404 (. 1977 ).PubMedCrossRefGoogle Scholar
  6. 6.
    K.E. Van Holde and I. Isenberg, Nucleosome chromatin structure, Accts. Chem. Res. 8: 327 (1975).CrossRefGoogle Scholar
  7. 7.
    L.C. Lutter, Precise location of DNase I cutting sites in the nucleosome core determined by high resolution gel electrophoresis, Nucleic Acids Res. 6: 41–56 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    E.M. Bradbury, J.P. Baldwin, B. Carpenter, R.P. Hjelm, R. Hancock and K. Ibel, Neutron scattering studies of chromatin, in: “Brookhaven Symp. Biol. 27 IV” B.P. Sohoenborn, ed., pp. 97–117 (1975).Google Scholar
  9. 9.
    P. Suau, G. Kneale, G.W. Braddock, J.P. Baldwin and E.M. Bradbury, A low resolution model for the chromatin core particle by neutron scattering, Nucleic Acids Res. 4: 3769–3786 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    G.W. Braddock, J.P. Baldwin and E.M. Bradbury, Neutron scattering studies of the structure of chromatin core particles in solution, Biopolymers (in press, 1980).Google Scholar
  11. 11.
    J. P. Pardon, D.L. Worcester, J.C. Wooley, K. Tatchell, K.E. Van Holde and B.M. Richards, Low angle neutron scattering from chromatin subunit particles, Nucleic Acids Res. 2: 2163–2176 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    B.M. Richards, J.F. Pardon, D. Lilley, R. Cotter and J.C. Wooley, The sub-structure of nucleosomes, Cell Biol. Int. Rep. 1: 107–116 (1977).PubMedCrossRefGoogle Scholar
  13. 13.
    J.F. Pardon, R.I. Cotter, D.M.C. Lilley, D. L. Worcester, R.M. Campbell, J.C. Wooley and B.M. Richards, Scattering studies of chromatin subunits, Cold Spring Harbor Symp. Quant. Biol., XLII: 11–23 (1978).Google Scholar
  14. 14.
    J.T. Finch, L.C. Lutter, D. Rhodes, R.S. Brown, B. Rushton, M. Levitt and A. Klug, Structure of nucleosome core particles of chromatin, Nature, 269: 29–36 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    J.T. Finch and A. Klug, X-ray and electron microscope analyses of crystals of nucleosome cores, Cold Spring Harbor Symp. Quant. Biol., XLII: 1–11 (1978).Google Scholar
  16. 16.
    G.G. Kneale, J.P. Baldwin and E.M. Bradbury, Neutron scattering of biological macromolecules in solution, Quant. Rev. Biophys. 10: 485–527 (1977).CrossRefGoogle Scholar
  17. 17.
    R.P. Hjelm, G.G. Kneale, P. Suau, J.P. Baldwin, E.M. Bradbury and K. Ibel, Small angle neutron scattering studies of chromatin subunits in solution, Cell 10: 139–151 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    E.M. Johnson, V.C. Littau, V.G. Allfrey, E.M. Bradbury and H.R. Matthews, The sub-unit structure of chromatin from Physarum polycephalum, Nuclei Acids Res. 3: 3313–3329 (1976).Google Scholar
  19. 19.
    D. Lohr, J. Cordieu, K. Tachell, R.T. Kovak and K.E. Van Holde, A comparative subunit structure of HeLa yeast and chicken erythrocyte chromatin, Proc. Natl. Acad. Sci. U.S.A. 74: 79–83 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    H. Ris, Chromosomal structure as seen by electron microscopy, Ciba Found. Symp. 28: 7 (1975).Google Scholar
  21. 21.
    P. Suau, E.M. Bradbury and J.P. Baldwin, Higher order structures of chromatin in solution, Euro. J. Biochem. 97: 593–602 (1979).CrossRefGoogle Scholar
  22. 22.
    L. Klevan, M. Hogan, N. Dattagupta and D.M. Crothers, Electric dichroism studies of the size and shape of nucleosome particles, Cold Spring Harbor Symp. Quant. Biol., XLII: 207–214 (1978).Google Scholar
  23. 23.
    J.D. McGhee, D.C. Rau, E. Charney and G. Felsenfeld, Orientation of the nucleosome within the higher order structure of chromatin, Cell (in press, 1980).Google Scholar
  24. 24.
    F. Thoma, Th. Roller and A. Klug, Involvement of his tone H1 in the organization of the nucleosome and of the salt- dependent superstructure of chromatin, J. Cell Biol. 83: 403–427 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    E.M. Bradbury, G.E. Chapman, S.E. Danby, P.G. Hartman and P.L. Riches, Studies on the role and mode of operation of the very-lysine rich histone H1 (F1) in eukaryote chromatin. The properties of the N-terminal and C-terminal halves of histone H1, Eur. J. Biochem. 57: 521–528 (1975).PubMedCrossRefGoogle Scholar
  26. 26.
    G.E. Chapman, P.G. Hartman and E.M. Bradbury, Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The isolation of the globular and non-globular regions of the histone H1 molecule. Eur. J. Biochem. 61: 69–75 (1976).PubMedCrossRefGoogle Scholar
  27. 27.
    P.G. Hartman, G.E. Chapman, T. Moss and E.M. Bradbury, Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The three structural regions of the histone H1 molecule, Eur. J. Biochem. 77: 45–51 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    G.E. Chapman, P.G. Hariman, P.D. Cary, E.M. Bradbury and D.R. Lee, A nuclear-magnetic-resonance study of the globular structure of the H1 histone, Eur. J. Biochem. 86: 35–44 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    C. Crane-Robinson, personal communication, (1980).Google Scholar
  30. 30.
    P.D. Carey, T. Moss and E.M. Bradbury, High resolution proton magnetic resonance studies of chromatin core particles, Eur. J. Biochem., 89: 475–482 (1979).CrossRefGoogle Scholar
  31. 31.
    J. Whitlock and R.T. Simpson, Localization of the sites along the nucleosome DNA which interact with NH-terminal histone regions, J. Biol. Chem. 252: 6516–6520 (1977).PubMedGoogle Scholar
  32. 32.
    R.T. Simpson, J.P. Whitlock, M. Binn-Stein and A. Stein, Histone-DNA interactions in chromatin core particles, Cold Spring Harbor Symp. Quant. Biol., 42: 127–136 (1977).CrossRefGoogle Scholar
  33. 33.
    B. G. Carpenter, J.P. Baldwin, E.M. Bradbury and K. Ibel, Organization of subunits in chromatin, Nucleic Acids Res. 3: 1739–1746 (1976).PubMedGoogle Scholar
  34. 34.
    J.P. Baldwin, B.G. Carpenter, D. Nixon and E.M. Bradbury, unpublished, (1980).Google Scholar
  35. 35.
    M. Renz, P. Nehlis and P. Mozier, Histone H1 involvement in the structure of the chromatin fiber, Cold Spring Harbor Symp. Quant. Biol., XLII: 245: 252 (1977).Google Scholar
  36. 36.
    A. D. Olins, Nu-bodies are close-packed in chromatin fibers, Cold Spring Harbor Symp. Quant. Biol., XLII: 325–329 (1977).Google Scholar
  37. 37.
    C. Von Holt, W.N. Strickland, W.F. Brandt and M. Strickland, More histone structures, FEBS. Lett., 100: 201–218 (1979).CrossRefGoogle Scholar
  38. 38.
    R. Kornberg and J.O. Thomas, Chromatin Structure: oligomers of the histones, Science 184: 865–868 (1974).PubMedCrossRefGoogle Scholar
  39. 39.
    R.I. Kelly, Isolation of a histone IIbl-IIb2 complex, Biochem. Biophys. Res. Comm., 54: 1588–1595 (1973).CrossRefGoogle Scholar
  40. 40.
    J.R. D’Anna and I. Isenberg, A histone cross-complexing system, Biochem. 13: 4992–4997 (1974).CrossRefGoogle Scholar
  41. 41.
    T. Moss, P.D. Cary, C. Crane-Robinson and E.M. Bradbury, Physical studies on the H3/H4 histone tetramer, Biochem. 15: 2261–2267 (1976).CrossRefGoogle Scholar
  42. 42.
    L. Bohm, H. Hayashi, P.D. Cary, T. Moss, C. Crane-Robinson and E.M. Bradburg, Sites of histone/histone interactions in the H3-H4 complex, Eur. J. Biochem. 77: 487–493 (1977).PubMedCrossRefGoogle Scholar
  43. 43.
    T. Moss, P.D. Carey, B.D. Abercrombie, C. Crane-Robinson and E.M. Bradbury, A pH-dependent interaction between histone H2A & H2B involving secondary and tertiary folding, Eur. J. Biochem. 71: 337–350 (1976).PubMedCrossRefGoogle Scholar
  44. 44.
    R.J.P. Williams, The conformational properties of proteins in solution, Biol. Rev. 54: 389–437 (1979).PubMedCrossRefGoogle Scholar
  45. 45.
    P.G. Boseley, E.M. Bradbury, G. Butler-Brown, B.G. Carpenter and R.M. Stephens, Physical studies of chromatin. The recombination of histones with DNA, Eur. J. Biochem. 62: 21–31 (1976).PubMedCrossRefGoogle Scholar
  46. 46.
    T. Moss, R.M. Stephens, C. Crane-Robinson and E.M. Bradbury, A nucleosome-like structure containing DNA and the arginine-rich histones H3 and H4, Nucleic Acids Res. 4: 2477–2485 (1977).PubMedCrossRefGoogle Scholar
  47. 47.
    B. Soliner-Webb, R.D. Camerini-Otero and G. Felsenfeld, Chromatin structure as probed by nucleases and proteases. Evidence for the central role of histones H3 and H4, Cell 9: 179–193 (1976).CrossRefGoogle Scholar
  48. 48.
    R.D. Camerini-Otero, B. Sollner-Webb and G. Felsenfeld, The organization of histones and DNA in chromatin: evidence for an arginine-rich histone kernal, Cell 8: 333–347 (1976).PubMedCrossRefGoogle Scholar
  49. 49.
    S. Ichimura and M. Zama, The interaction of 8-anilino-1-naphthalenesulfate with polylysine and polyarginine, Biopolymers 16: 1449–1464 (1977).PubMedCrossRefGoogle Scholar
  50. 50.
    S. Ichimura, K. Mita and M. Zama, Conformation of poly (L-arginine): I. Effects of anions, Biopolymers 17: 2769–2782 (1978).CrossRefGoogle Scholar
  51. 51.
    K. Mita, S. Ichimura and M. Zama, Conformation of poly (L-arginine): II. Complexes with polyanion’s, Biopolymers 17: 2783–2798 (1978).CrossRefGoogle Scholar
  52. 52.
    K. Mita, S. Ichimura and M. Zama, Conformation of poly (L-Homoarginine), Biopolymers 19: 1123–1135 (1980).CrossRefGoogle Scholar
  53. 53.
    E.M. Bradbury, R.J. Inglis, H.R. Matthews and N. Sarner, Histone HI phosphorylation in Physarum polycephalum correlation with chromosome condensation. Eur. J. Biochem. 33: 131–139 (1973).PubMedCrossRefGoogle Scholar
  54. 54.
    L.R. Gurley, J.A. D’Anna, S.S. Barham, L.L. Deaven and R.A. Tobey, Histone cells, Eur. J. Biochem. 84: 1–16 (1978).PubMedCrossRefGoogle Scholar
  55. 55.
    L.R. Gurley, R.A. Tobey, P.A. Walters, C.E. Hilderbrand, P.G. Hohman, J.A. D’Anna, S.S. Barham and L.L. Deaven, in: “Cell Cycle Regulation”, J.R. Jeter, I.L. Cameron, G.M. Padilla and R.M. Zimmerman, ed., Academic Press, New York (1978).Google Scholar
  56. 56.
    S.G. Fischer and U.K. Laemmli, Cell cycle changes in Physarum polycephalum histone HI phosphate: relationship to deoxyribonucleic acid binding and chromosome condensation, Biochem. 19: 2240–2246 (1980).CrossRefGoogle Scholar
  57. 57.
    J. Mohberg and H.P. Rusch, Nuclear histones in Physarum polycephalum during growth and differentiation, Arch. Biochem. Biophys. 138: 418–432 (1978).CrossRefGoogle Scholar
  58. 58.
    L.R. Gurley, R.A. Walters and R.A. Tobey, Sequential phosphorylation of histone sub-fractions in the Chinese hamster cell cycle, J. Biol. Chem. 250: 3936–3944 (1975).PubMedGoogle Scholar
  59. 59.
    R.S. Lake and H.P. Salzman, Occurence and properties of a chromatin-associated F-1 histone phosphokinease in mitotic Chinese hamster cells, Biochem. 11: 4817–4826 (1972).CrossRefGoogle Scholar
  60. 60.
    R.S. Lake, J.A. Goidl and N.P. Salzman, Fl histone modification at metaphase in Chinese hamster cells, Exp. Cell Res. 73: 113–121 (1972).PubMedCrossRefGoogle Scholar
  61. 61.
    R.K. Lake, Further characterization of the F1 histone Phosphokinase of metaphase-arrested animal cells, J. Cell Biol. 58: 317–333 (1973).PubMedCrossRefGoogle Scholar
  62. 62.
    R. Balhorn, O. Riecke and R. Chalkley, Rapid electrophoretic analysis for histone phosphorylation. A reinvestigation for phosphorylation of lysine-rich histone during rate liver regeneration, Biochem. 10: 3952–3959 (1971).CrossRefGoogle Scholar
  63. 63.
    R. Balhorn, M. Balhorn, H.P. Morris and R. Chalkley, Comparative high-resolution electrophoresis of tumor histones variation in phosphorylation as a function of cell replication rate, Cancer Res. 32: 1775–1784 (1972).PubMedGoogle Scholar
  64. 64.
    R. Balhorn, J. Bardwell, L. Sellers, D. Lranner and R. Chalkley, Histone phosphorylation and DNA synthesis are linked in synchronous cultures of HTC cells, Biochem. Biophys. Res. Comm. 46: 1326–1333 (1972).PubMedCrossRefGoogle Scholar
  65. 65.
    D. Sherod, G. Johnson, R. Balhorn, V. Jackson, R. Chalkley and D. Granner, The phosphorylation region of lysine-rich histone in dividing cells, Biochem. Biophys. Acta 381: 337–347 (1975).PubMedCrossRefGoogle Scholar
  66. 66.
    V. Jackson, A. Shires, R. Chalkley and D.K. Granner, Studies on highly metabolically active acetylation and phosphorylation of his tones, J. Biol. Chem. 250: 4856–4863 (1975).PubMedGoogle Scholar
  67. 67.
    V. Jackson, R. Shires, N. Tanphaichitr and R. Chalkley, Modification to histones immediately after synthesis, J. Mol. Biol. 104: 471–483 (1976).PubMedCrossRefGoogle Scholar
  68. 68.
    N. Tanphaichitr, K.C. Moore, D. Granner and R. Chalkley, Relationship between chromosome condensation and metaphase lysine-rich his tone phosphorylation, J. Cell Biol, 69: 43–50 (1976).PubMedCrossRefGoogle Scholar
  69. 69.
    T.A. Langan, Isolation of histone kinases, in: “Methods in Cell Biology” G.S. Stein and J. Stein, Ed., Academic Press, New York 19:143–152 (1978).Google Scholar
  70. 70.
    T.A. Langan, Methods for the assessment of site-specific histone phosphorylation, in: “Methods on Cell Biology” G.S. Stein and J. Stein, ed., Academic Press, New York 19:127–142 (1978)Google Scholar
  71. 71.
    T.A. Langan and P. Hohman, Phosphorylation of threonine and serine residues of lysine-rich histone in growing cells, Fed. Proc. 33: 1597 (1974).Google Scholar
  72. 72.
    K. Ajiro, T, Borun and L. Cohen, Phosphorylation sites of histone 1 (F1) in relation to the cell cycle, Fed. Proc. 34: 581 (1975).Google Scholar
  73. 73.
    T.W. Dolby, K. Ajiro, T. Borun, R.S. Gilmour, A. Zweidler, L. Cohen, P. Miller and C. Nicolini, Physical properties of DNA and chormatin isolated from G1 and S phase HeLa S-3 cells. Effects of histone HI phosphorylation and stage specific non-histone chromosomal proteins on the molar ellipticity of native and reconstituted nucleoproteins during thermal denaturation, Biochem. 18: 1333–1343 (1979).CrossRefGoogle Scholar
  74. 74.
    Y. Matsumoto, H. Harsuda, S. Mita, T. Marunouchi and M. Yamada, Evidence for the involvement of H1 histone phosphorylation in chromosome condensation, Nature 284: 181–183 (1980).PubMedCrossRefGoogle Scholar
  75. 75.
    A.J. Adler, B. Shaffhaussen, T.A. Langan and G.D. Fasman, Altered conformational effects of phosphorylated lysine-rich histone (f-1) in f-1 deoxyribonucleic acid complexes. Circular dichroism and immunological studies, Biochem. 10: 909–913 (1971).CrossRefGoogle Scholar
  76. 76.
    A.J. Adler, T.A. Langan and G.D. Fassman, Complexes of deoxyribonucleic acid with lysine-rich (F1) histone phosphorylated at two separate sites: circular dichroism studies, Arch. Biochem. Biophys. 153: 769 (1972).PubMedCrossRefGoogle Scholar
  77. 77.
    H.W.E. Rattle, T.A. Langan, S.E. Danby and E.M. Bradbury, Studies on the role and mode of operation of the very lysine-rich histones in eukaryote chromatin. Effect of A and B site phosphorylation on the conformation and interaction of histone H1, Eur. J. Biochem. 81: 499–505 (1977).PubMedCrossRefGoogle Scholar
  78. 78.
    T.M. Fasy, A. Inoue, E.M. Johnson and V.G. Allfrey, Phosphorylation of H1 and H5 histones by cyclic AMP dependent protein kinase reduces DNA binding, Biochem. Biophys. Acta 564: 322–334 (1979).PubMedGoogle Scholar
  79. 79.
    A.J. Iouie and G.H. Dixon, Kinetics of phosphorylation of tests histones and their possible role in determining chromosomal structure, Nature New Biol. 243: 164–168 (1973).Google Scholar
  80. 80.
    A. Jerzmanowski and K. Staron, Mg as a trigger of condensation-decondensation transition of chromatin during mitosis, J. Theoret. Biol. 82: 41–46 (1980).CrossRefGoogle Scholar
  81. 81.
    H.R. Matthews, Chromatin proteins and progress through the cell cycle, in “The Cell Cycle”, P. John, ed., Cambridge University Press, England (1980).Google Scholar
  82. 82.
    H.R. Matthews and E.M. Bradbury, The role of histone HI phosphorylation in the cell cycle: turbidity studies of H1-DNA interaction, Exp. Cell Res. 111: 343–351 (1978).PubMedCrossRefGoogle Scholar
  83. 83.
    S. Corbett, E.M. Bradbury and H.R. Matthews, Histone HI from prophase aggregates DNA better than histone HI from S phase, Exp. Cell Res. 128: 127–132 (1980).PubMedCrossRefGoogle Scholar
  84. 84.
    E.M. Bradbury, R.J, Inglis and H.R. Matthews, Control of cell division by very lysine-rich histone phosphorylation, Nature 247: 257–261 (1974).PubMedCrossRefGoogle Scholar
  85. 85.
    K. Mitchelson, T. Chambers, E.M. Bradbury and H.R. Matthews, Activation of histone kinase in G2 phase of the cell cycle in Physarum polycephalum, FEBS. Lett. 92: 339–342 (1978).PubMedCrossRefGoogle Scholar
  86. 86.
    H.R. Matthews, Chromosome condensation in mitosis, J. Theoret. Biol. 83: 367–368 (1980).CrossRefGoogle Scholar
  87. 87.
    T. Chambers, “Physarum histone kinase”, Ph.D. Thesis, CNAA, Portsmouth, England (1980).Google Scholar
  88. 88.
    D.G. Hardie, H.R. Matthews and E.M. Bradbury, Cell-cycle dependence of two nuclear histone kinase enzyme activities, Eur. J. Biochem. 66: 37–42 (1976).PubMedCrossRefGoogle Scholar
  89. 89.
    J. Schlepper and R. Knippers, Nuclear protein kinases from murine cells, Eur. J. Biochem. 60: 209–220 (1975).PubMedCrossRefGoogle Scholar
  90. 90.
    T.A. Langan, Phosphorylation of liver histone following the administration of glucagon and insulin, Proc. Nat. Acad. Sci. USA, 64: 1276–1283 (1969).PubMedCrossRefGoogle Scholar
  91. 91.
    J.J. Tyson, G. Carcia-Herdugo and W. Sachsenmaier, Control of nuclear division in Physarum polycephalum. Comparison of cycloheximide pulse treatment, UV irradiation and heat shock, Exp. Cell Res. 119: 87–98 (1979).PubMedCrossRefGoogle Scholar
  92. 92.
    B. Chin, P.D. Friedrich and I.A. Bernstein, Stimulation of mitosis following fusion of plasmodia in the myxomycete Physarum polycephalum. J. Gen. Microbiol. 71: 93–101 (1972).PubMedGoogle Scholar
  93. 93.
    H.P. Rusch, W. Sachsenmaier, K. Behrens and V. Griter, Synchronization of mitosis by the fusion of the plasmodia of Physarum polycephalum, J. Cell Biol. 31: 204–209 (1966).PubMedCrossRefGoogle Scholar
  94. 94.
    E.N. Brewer and H.P. Rusch, Effect of elevated temperature shocks on mitosis and on the initiation of DNA replication in Physarum polycephalum, Exp. Cell Res. 49: 79–86 (1968).PubMedCrossRefGoogle Scholar
  95. 95.
    C.P. Prior, C.R. Cantor, E.M. Johnson and V.G. Allfrey, Incorporation of exogenous pyrene-labeled histone into Physarum chromatin: a system for studying changes in nucleosomes assembled in vivo, Cell 20: 597–608 (1980).PubMedCrossRefGoogle Scholar
  96. 96.
    E.M. Bradbury, R.J. Inglis, H.R. Matthews, and T.A. Langan, Molecular basis of control of mitotic cell division in eukaryotes, Nature 249: 553–556 (1974).PubMedCrossRefGoogle Scholar
  97. 97.
    R.J. Inglis, T.A, Langan, H.R. Matthews, D.G. Hardie and E.M. Bradbury, Advance of mitosis by histone Phosphokinase, Exp. Cell Res. 97: 418–425 (1976).PubMedCrossRefGoogle Scholar
  98. 98.
    I.N. Trakht, I.D. Grozdova, N.N. Gulyaev, E.S. Severin and N.V. Gnuchev, Effect of some protein kinases, cyclic nucleotides and specific phosphorylation inhibitors on the onset time of mitosis in the mycomycetes Physarum polyceph, Biokhimiya 45: 783–793 (1980).Google Scholar
  99. 99.
    K. Zanker, R.J. Inglis, H.R. Matthews, and E.M. Bradbury, Cross-reacting nuclear non-histone antigens from Physarum polycephalum and Ehrlich ascites cells, Biochem. Soc. Trans. 5: 953–957 (1977).PubMedGoogle Scholar
  100. 100.
    H.R. Matthews, D.G. Hardie, R.J. Inglis and E.M. Bradbury, The molecular basis of control of mitotic cell division, in: “The molecular basis of circadian rhythms”, J.W. Hastings and H.G. Schweiger, ed., Dahlem Konferenzen, Berlin, pp. 395–408 (1976).Google Scholar
  101. 101.
    W. Sachsenmaier, Control of synchronous nuclear mitosis in Physarum polycephalum, in: “The molecular basis of circadian rhythms”, J.W. Hastings and H.G. Schweiger, ed., Dahlem Konferenzen, Berlin, pp. 409–420 (1976).Google Scholar
  102. 102.
    V.G. Allfrey, Post-synthetic modifications of histone structure, in: “Chromatin and Chromosome Structure”, Li and Eckhardt, ed., Academic Press, New York, p. 167 (1977).Google Scholar
  103. 103.
    V.G. Allfrey, R.M. Faulkener and A.E. Mirsky, Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis, Proc. Nat. Acad. Sci. USA 51: 786–794 (1964).PubMedCrossRefGoogle Scholar
  104. 104.
    M.T. Sung and G.H. Dixon, Modification of histones during spermiogenesis in trout: A molecular mechanism for altering histone binding to DNA, Proc. Nat. Acad. Sci. USA, 67: 1616–1623 (1970).PubMedCrossRefGoogle Scholar
  105. 105.
    S. Corbett, S. Miller, V.J. Robinson, H.R. Matthews and E.M. Bradbury, Physarum polycephalum histones, Biochem. Soc. Trans. 5: 943–946 (1977).PubMedGoogle Scholar
  106. 106.
    S.S. Chahal, H.R. Matthews and E.M. Bradbury, Acetylation of histone H4 and its role in chromatin structure and functions, Nature 287: 76–79 (1980).PubMedCrossRefGoogle Scholar
  107. 107.
    S.S. Chahal, H.R. Matthews and E.M. Bradbury, unpublished.Google Scholar
  108. 108.
    J.A. D’Anna, R.A. Tobey, S.S. Barham and L.R. Gurley, A reduction in the degree of H4 acetylation during mitosis in Chinese hamster cells, Biochem. Biophys. Res. Comm. 77: 187–202 (1977).PubMedCrossRefGoogle Scholar
  109. 109.
    I. Sures and D. Gallwitz, Histone-specific acetyltransferases from calf thymus. Isolation, properties and substrate specificity of three different enzymes, Biochem. 19: 943–951 (1980).CrossRefGoogle Scholar
  110. 110.
    D.G. Cousens and D. Gallwitz, Different accessibilities in chromatin to his tone acetylase, J. Biol. Chem. 254: 1716–1723 (1979).PubMedGoogle Scholar
  111. 111.
    C. Mittermeyer, R. Braun and H.P. Rusch, RNA synthesis in the mitotic cycle of Physarum polycephalum, Biochem. Biophys. Acta 91: 399–405 (1964).Google Scholar
  112. 112.
    W.D. Grant, The effects of alpha-amanitin and (NH4)2804 on RNA synthesis in nuclei and nucleoli isolated from Physarum polycephalum at different times during the cell cycle, Eur. J. Biochem. 2: 94–98 (1972).CrossRefGoogle Scholar
  113. 113.
    A.J. Louie, E.P.M. Candido and G.H. Dixon, Enzymatic modifications and their possible role in regulating the binding of basic proteins to DNA and controlling chromosome structure, Cold Spring Harbor Symp. Quant. Biol. 38: 803–319 (1973).CrossRefGoogle Scholar
  114. 114.
    A. Ruiz-Carillo, L.J. Haugh and V.G. Allfrey, Processing of newly synthesized histone molecules: nascent histone H4 chains are reversibly phosphorylated and acetylated, Science 190: 117–128 (1975).CrossRefGoogle Scholar
  115. 115.
    G.H. Goodwin, J.M. Walker and E.W. Johns, The high mobility group (HMG) chromosomal non-histone proteins, in: “The cell nucleus IV A,” H. Busch Ed., Academic Press, New York (1978).Google Scholar
  116. 116.
    B. Levy-W, N.C.W. Wong and C.H. Dixon, Selective association of the trout-specific H6 protein with chromatin regions susceptible to DNase II: possible location of HMG-T in the spacer region between core nucleosomes, Proc. Nat. Acad. Sci, USA 74: 2810–2814 (1977).Google Scholar
  117. 117.
    S. Weisbrod and H. Weintraub, Isolation of a sub class of nuclear proteins responsible for conferring a DNase I-sensitive structure on globin chromatin, Proc. Nat. Acad. Sci. USA, 76: 630–635 (1979).PubMedCrossRefGoogle Scholar
  118. 118.
    S. Weisbrod, M. Groudine and H. Weintraub, Interaction of HMG 14 and 17 with actively transcribed genes, Cell 19: 289–302 (1980).PubMedCrossRefGoogle Scholar
  119. 119.
    H.R. Matthews, S.S. Chahal, S. Miller, R.J. Inglis and E.M. Bradbury, Physarum chromatin, in: “Current research on Physarum” W. Sachsenmaier ed., University of Innsbruch, Austria, pp. 51–58 (1979).Google Scholar
  120. 120.
    N. Maclean, E.M. Bradbury and H.R. Matthews, “Chromosome structure and function” Blackwells, Oxford, England, in press (1980).Google Scholar
  121. 121.
    E.M. Johnson, V.C. Littau, V.G. Allfrey, E.M. Bradbury and H.R. Matthews, The sub-unit structure of chromatin from Physarum polycephalum, Nucleic Acids Res. 3: 3313–3329 (1976).PubMedGoogle Scholar
  122. 122.
    V. Vogt and R. Braun, Repeated structure of chromatin in metaphase nuclei of Physarum, FEBS. Lett. 64: 190–192 (1976).PubMedCrossRefGoogle Scholar
  123. 123.
    E.M. Johnson, V.G. Allfrey, E.M. Bradbury and H.R. Matthews, Altered nucleosome structure containing DNA sequences complementary to 198 and 268 ribosomal RNA in Physarum polycephalum, Proc. Nat. Acad. Sci. USA, 75: 1116–1120 (1978).PubMedCrossRefGoogle Scholar
  124. 124.
    J. Stalder, T. Seebeck and R. Braun, Degradation of the ribosomal genes by DNase I in Physarum polycephalum, Eur. J. Biochem. 90: 391–395 (1978).PubMedCrossRefGoogle Scholar
  125. 125.
    J. Stalder, T. Seebeck and R. Braun, Accessibility of the ribosomal genes to micrococcal nuclease in Physarum polycephalum, Biochem. Biophys. Acta 561: 452–463 (1979).PubMedGoogle Scholar
  126. 126.
    E.M. Johnson, H.R. Matthews, V.C. Littau, L. Lothstein, E.M. Bradbury and V.G. Allfrey, The structure of chromatin containing DNA complementary to 198 and 268 ribosomal RNA in active and inactive stages of Physarum polycephalum, Arch. Biochem. Biophys. 191: 537–550 (1978).PubMedCrossRefGoogle Scholar
  127. 127.
    K.W. Adolph, S.M. Cheng and U.K. Laemmli, Role of non-histone proteins in metaphase chromosome structure, Cell 12: 805–816 (1977).PubMedCrossRefGoogle Scholar
  128. 128.
    J.R. Paulson and U.K. Laemmli, The structure of histone-depleted metaphase chromosomes, Cell 12: 817–828 (1977).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • E. M. Bradbury
    • 1
  • H. R. Matthews
    • 1
  1. 1.Department of Biological Chemistry School of MedicineUniversity of CaliforniaDavisUSA

Personalised recommendations