Advertisement

Cell Growth pp 365-376 | Cite as

Primary Cilia and Their Role in the Regulation of DNA Replication and Mitosis

  • R. W. Tucker
  • A. B. Pardee
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 38)

Abstract

Motile cilia have a “9 and 2” organization of microtubules, with 9 doublets of microtubules on the periphery and 2 doublets in the center. Primary cilia are non-motile “9 and 0” without dynein arms and a central doublet of microtubules. The name primary was used for this structure because they were thought to be a precursor to the complete “9 and 2” cilium (47). However, it is now known that the primary cilium can be found during some part of the cell cycle in many, if not most cells in a multicellular organism (3, 4, 6, 13, 14, 17, 23, 25, 30, 36, 37, 44, 45, 50, 51, 58, 61, 62). In the majority of these cases, the “9 and 0” structure never becomes a “9 and 2” complete cilium. There are also some interesting differences in the formation of the “9 and 2” and “9 and 0” cilia. The classic “9 and 2” cilia are formed by basal bodies which are arranged next to the plasma membrane at some distance from the cytocenter. In a single cell there are often multiple basal bodies, each forming a cilium. The primary “9 and 0” cilium seems to be exclusively formed in vertebrates by a centriole usually near the nucleus away from the cell surface. By some mechanism the ciliary membrane forms around the primary cilium, even in its internal position next to the nucleus (48).

Keywords

Mitotic Spindle Primary Cilium Quiescent Cell Centriole Duplication Central Doublet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Albrecht-Buehler, Cell, 12: 333–339 (1977).PubMedCrossRefGoogle Scholar
  2. 2.
    G. Albrecht-Buehler and A. Bushneil, Exp. Cell Res., 126: 427–437 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    F.L. Archer and D.N. Wheatley, J. Anat., 109: 277–292 (1971).PubMedGoogle Scholar
  4. 4.
    B.G. Barnes, J. Ultrastructure Res., 5: 453–467 (1961).CrossRefGoogle Scholar
  5. 5.
    M.W. Berns, J.B. Rattner, S. Brenner and S. Meredith, J. Cell Biol., 72: 351–367 (1977).PubMedCrossRefGoogle Scholar
  6. 6.
    T.J. Biscoe and W.E. Stehbens, J. Cell Biol., 30: 563–578 (1966).PubMedCrossRefGoogle Scholar
  7. 7.
    R.A. Bloodgood, Cytobiol., 9: 143–161 (1974).Google Scholar
  8. 8.
    A.L. Boynton, J.F. Whitfield, R.J. Issacs and R. Tremblay, J. Cell Physiol., 92: 241–248 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    R.F. Brooks, D.C. Bennett and J.A. Smith, Cell, 19: 493–502 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    N.L.R. Bucher and D. Mazia, J. Biophys. Biochem. Cytol., 7: 651–655 (1960).PubMedCrossRefGoogle Scholar
  11. 11.
    B. Byers and L. Goetsch, J. Bacteriol., 124: 511–523 (1975).PubMedGoogle Scholar
  12. 12.
    N. de Terra, in: “Cell Reproduction: In Honor of Daniel Mazia”, E.R. Dirksen, D. Prescott and C.F. Fox (Editors), Academic Press, New York, pp. 525–537 (1978).Google Scholar
  13. 13.
    V.G. Fonte, R.L. Searles and R.S. Hilfer, J. Cell Biol., 49: 226–229 (1971).PubMedCrossRefGoogle Scholar
  14. 14.
    H. Fritz-Niggli and T. Suda, Cytobiologie, 5: 12–41 (1972).Google Scholar
  15. 15.
    N.C. Gilula and P. Satir, J. Cell Biol., 53: 494–509 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    R.R. Gould and C.C. Borisy, J. Cell Biol., 73: 601–615 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    M.A. Grillo and S.L. Palay, J. Cell Biol., 52: 430–436 (1962).Google Scholar
  18. 18.
    H. Hartman, J. Theor. Biol., 51: 501–509 (1975).PubMedCrossRefGoogle Scholar
  19. 19.
    L.H. Hartwell, J. Cell Biol., 77: 627–637 (1978).CrossRefGoogle Scholar
  20. 20.
    L.H. Hartwell, Fourth European Cell Cycle Workshop, April 17–19, 1978, Bern. Nature, 273: 594Google Scholar
  21. 21.
    S.R. Heidemann, G. Sander and M.W. Kirschner, Cell, 10: 337–350 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    L.F. Henneguy, Arch. Anat. Microscop. Morphol. Exp., 1: 481–496 (1898).Google Scholar
  23. 23.
    H. Latta, A.B. Maunsbach, and S.C. Madden, J. Biophys. Biochem. Cytol., 11: 248–251 (1961).PubMedCrossRefGoogle Scholar
  24. 24.
    M. Von Lenhossek, Iber flimmerzelien. Verh. Anat. Ges. Kiel., 12: 106–128 (1898).Google Scholar
  25. 25.
    H.S. Lin and I. Chen, Z. Zellforsch, 96: 186–205 (1969).PubMedCrossRefGoogle Scholar
  26. 26.
    C. Lloyd, Nature, 280: 631–632 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    A. Lockwood, Personal Communication (1980).Google Scholar
  28. 28.
    H.L. Malech, R.K. Root and J.I. Gallin, J. Cell Biol., 75: 666–693 (1977).PubMedCrossRefGoogle Scholar
  29. 29.
    D. Mazia, P.J. Harris and T. Bebring, J. Biophys. and Biochem. Cytol., 7: 1–21 (1960).CrossRefGoogle Scholar
  30. 30.
    E. Meier-Vismara, N. Walker and A. Vogel, Expl. Cell Biol., 47: 161–171 (1979).Google Scholar
  31. 31.
    Y. Mori, H. Akedo, K. Tanigaki and M. Okada, Exp. Cell Res., 120: 435–436 (1979).PubMedCrossRefGoogle Scholar
  32. 32.
    S.P. Peterson and M.W. Berns, J. Cell Sci., 34: 289–301 (1978).PubMedCrossRefGoogle Scholar
  33. 33.
    S.C. Phillips and J.B. Rattner, J. Cell Biol., 70: 9–19 (1976).PubMedCrossRefGoogle Scholar
  34. 34.
    J.D. Pickett-Heaps, Annal N.Y. Acad. Sci., 238: 352–361 (1975).CrossRefGoogle Scholar
  35. 35.
    W.J. Pledger, C.D. Stiles, H.N. Antoniades and C.D. Sher, Proc. Nat. Acad. Sci. USA, 74: 4481–4484 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    R.J. Przybylski, J. Cell Biol., 48: 214–221 (1971).CrossRefGoogle Scholar
  37. 37.
    J.E. Rash, J.W. Shay, J.J. Biesele, J. Ultrastructure Res., 29: 470–484 (1969).CrossRefGoogle Scholar
  38. 38.
    J.B. Rattner and S.G. Phillips, J. Cell Biol., 57: 359–372 (1973).PubMedCrossRefGoogle Scholar
  39. 39.
    C.L. Rieder, J. Cell Biol., 80: 1–9 (1979).PubMedCrossRefGoogle Scholar
  40. 40.
    C.L. Rieder, C.G. Jensen and L.C.W. Jensen, J. Ultrastructure Res., 68: 173–188 (1979).CrossRefGoogle Scholar
  41. 41.
    E. Robbins, G. Jentzsch, A. Micali, J. Cell Biol., 36: 329–339 (1968).PubMedCrossRefGoogle Scholar
  42. 42.
    L.E. Roth, H.J. Wilson and J. Chakraborty, J. Ultrastructure Res., 16: 460–483 (1966).CrossRefGoogle Scholar
  43. 43.
    B. Satir, W.S. Sale, and P. Satir, Exp. Cell Res., 97: 83–91 (1976).PubMedCrossRefGoogle Scholar
  44. 44.
    C.D. Scher, W.J. Pledger, P. Martin, H.N. Antoniades, and C.D. Stiles, J. Cell Physiol., 97: 371–380 (1978).PubMedCrossRefGoogle Scholar
  45. 45.
    J.P. Scherft and W.T. Daems, J. Ultrastructure Res., 19: 546–555 (1967).CrossRefGoogle Scholar
  46. 46.
    G. Sluder, in: Cell Reproduction: In Honor of Daniel Mazia, E.R. Dirksen, D. Prescott and C.F. Fox, (Editors), Academic Press, N.Y., pp. 563–569 (1978).Google Scholar
  47. 47.
    J.A. Synder and R.M. Liskay, J. Cell Biol., 79: 13 (1978).Google Scholar
  48. 48.
    S.P. Sorokin, J. Cell Sci., 3: 207–230 (1978).Google Scholar
  49. 49.
    E. Stubbelfield and B.R. Brinkley, J. Cell Biol., 30: 645–652 (1966).CrossRefGoogle Scholar
  50. 50.
    S. Tachi, C. Tachi and H.R. Lindner, Biol. Reprod., 10: 391–403 (1974).PubMedCrossRefGoogle Scholar
  51. 51.
    Y. Tanuma, and M. Ohata, Arch. Histol. Jap., 41: 367–376 (1978).PubMedCrossRefGoogle Scholar
  52. 52.
    C.A. Thompson, L.C. Baugh, L.C. Walker, J. Cell Biol., 61: 253–257 (1974).PubMedCrossRefGoogle Scholar
  53. 53.
    J.B. Tucker, J. Cell Sci., 6: 385–429 (1970).PubMedGoogle Scholar
  54. 54.
    R.W. Tucker, A.B. Pardee and K. Fujiwara, Cell, 18: 527–535 (1979).CrossRefGoogle Scholar
  55. 55.
    R.W. Tucker, C.D. Scher and C.D. Stiles, Cell, 18: 1065–1072 (1979).PubMedCrossRefGoogle Scholar
  56. 56.
    R.W. Tucker, C.D. Stiles, C.D. Sher, and A.B. Pardee, J. Cell Biol., 83: 12a (1979).Google Scholar
  57. 57.
    J.T. Tupper and Sorgniotti, J. Cell Biol., 75: 12–22 (1977).PubMedCrossRefGoogle Scholar
  58. 58.
    N.J. Wilsman, J. Ultrastructure Res., 64: 270–281 (1978).CrossRefGoogle Scholar
  59. 59.
    R.C. Weisenberg, Science, 177: 1104–1105 (1972).PubMedCrossRefGoogle Scholar
  60. 60.
    H.A. Went, J. Theor. Biol., 68: 95–100 (1977).PubMedCrossRefGoogle Scholar
  61. 61.
    D.N. Wheatley, J. Anat., 105: 351–362 (1969).PubMedGoogle Scholar
  62. 62.
    D.N. Wheatley, J. Anat., 110: 367–382 (1971).PubMedGoogle Scholar
  63. 63.
    J. Wolfe, J. Cell Physiol., 82: 39–48 (1973).PubMedCrossRefGoogle Scholar
  64. 64.
    E. Zeuthen and N.E. Williams, in: “Nucleic Acid Metabolism Cell Differentiation and Cancer Growth” E.V. Cowdry and S. Seno, editors, Oxford Pergamon Press, pp. 203–217 (1967).Google Scholar
  65. 65.
    C.A. Zorn, J.J. Lucas and J.R. Kates, Cell, 18: 659–672 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • R. W. Tucker
    • 1
  • A. B. Pardee
    • 2
  1. 1.Cell Proliferation LaboratoryThe Johns Hopkins Oncology CenterBaltimoreUSA
  2. 2.Cell Growth and RegulationSidney Farber Cancer InstituteBostonUSA

Personalised recommendations