Advertisement

Electrical Milestones in Mammalian Brain Development

  • G. Pampiglione
Part of the Ettore Majorana International Science Series book series (EMISS, volume 7)

Summary

In developmental studies of mammals, and particularly in man, it has become fashionable to represent the evolution of physical measurements as auniform continuum, shaped as a smooth curve or “best line”. In biological work various statistical methods of analysis have led many investigators to average individual variations and bury them between the lines of standard deviations. Emphasis on coincidence of phenomena rather than on their scatter may explain how a series of maturational steps in young mammals may be made to disappear with resulting loss of information.

In the present study of the normal development of brain function (and especially of EEG maturation in mammals) particular species have been selected because of their dissimilarity, not only in the duration of pregnancy but also in the delay period from birth to near maturity of brain function. Postnatal development of the EEG is relatively rapid in the pig and lamb, slower in the dog and much slower in the monkey and man. 64 pigs (with 280 EEGs from birth to the sixth month), 8 lambs (with 32 EEGs from 6 days to 4 months), 181 dogs (2000 EEGs from a few hours after birth until the age of one year) and 146 children (666 EEGs from 3 months to 5 years of age) were personally studied, while data on monkeys were reviewed from the literature.27,28,29

During maturation in all these mammals, the EEG features do not evolve according to a uniformly continuous process as suggested in the literature, but proceed in somewhat irregular steps. There are long periods (weeks or months) during which the EEG changes are negligible, and much shorter periods (days) during which there is a fairly rapid evolution towards the next plateau. Therefore normal EEG milestones for given species and age are predictable provided that nutritional, endocrine and ethnic factors are taken into consideration. Such information would be missed if the “best line” approach is used.

Keywords

Rhythmic Activity Posterior Half Alpha Rhythm Rhythmic Component Young Lamb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Berger, Ueber des Elektronkophalogramm des Menschen, in: Arch. Psychiat. Nervenkr., 87:527 (1929)Google Scholar
  2. 1a.
    H. Berger, Ueber des Elektronkophalogramm des Menschen, in: Arch. Psychiat. Nervenkr.,and 98:231 (1932).Google Scholar
  3. 2.
    R. Caton, The electric currents of the brain, in: Brit. Med. Journal, 2:270 (1875).Google Scholar
  4. 3.
    W. F. Caveness, G. Van Wagenen, D. B. Lindsley, Comparison of monkey and human electroencephalograph development from birth to puberty, in Trans Amer. Neurol. (1960).Google Scholar
  5. 4.
    W. F. Caveness, Atlas of Electroencephalography in developing monkeys (Macacca Mulatta), London, Pergamon Press (1962).Google Scholar
  6. 5.
    C. Dreyfus-Brisac, Activite electrique cerebrale du foetus et du tres jeune premature in: Rapport 1st Congres inter. Science Neurologique, Brussels, 163 (1957).Google Scholar
  7. 6.
    C. Dreyfus-Brisac, Neonatal electroencephalography, reviews in: Perinatal Medicine Vol.3, ed. Raven, New York (1979).Google Scholar
  8. 7.
    C. Dreyfus-Brisac, D. Samson-Dollfus, C. Blanc, and N. Monod, L’encephalogramme de l’infant normal de moins de 3 ans. Aspect fonetionel bioelectrique de la maturation nerveuse in Etudes Neonatal, 4:143 (1958).Google Scholar
  9. 8.
    G. Dummermuth, Elektroencephalographie im Kindersalter, Georg Thieme Verlag, Stuttgart, 287 (1979).Google Scholar
  10. 9.
    R. J. Ellingson, The study of brain electrical activity in infants, in: Advances in Childhood evelopment and Behaviour, Vol.3, eds. C. C. Lipsitt and L. P. Spiker, Academic Press, New York, 53–97 (1967).CrossRefGoogle Scholar
  11. 10.
    J. W. Eeg-Oolffson, Development of the electroencephalo-gram in normal children from the age of 1 through 15 years, in: Neuripadiatrie, 2:405 (1971).Google Scholar
  12. 11.
    R. Engel, Maturational changes and abnormalities in the newborn EEG, in: Develop. Med. Child Neurol., 7:498–506 (1965).CrossRefGoogle Scholar
  13. 12.
    S. Faladé, Le développement psychomoteur du jeaune Africain originaire du Senegal au cours de la première année, Paris.Google Scholar
  14. 13.
    M. Geber and R.F.A. Dean, State of development of newborn African children, Lancet, ii:1216 (1957)CrossRefGoogle Scholar
  15. 14.
    M. Gerber and R. F. A. Dean, La development psychomoteur et des jeune infants Africaine en Ouganda, Courriere, 14:425.Google Scholar
  16. 15.
    F.A. Gibbs and E. L. Gibbs, Atlas of EEG. Vol.1, Addison-Wesley, Cambridge, Massachusetts (1950).Google Scholar
  17. 16.
    I. Hagne, Development of the EEG in normal infants from the first year of life, Acta Paed. Scand. Suppl. 1:232 (1972).Google Scholar
  18. 17.
    C. E. Henry, EEG of normal children, Monograph of the Society for Research in Child Development, 9,39, Washington (1944).Google Scholar
  19. 18.
    P. Kellaway, Ontogenic evaluation of the electrical activity of the brain in man and animals, Rapport 1st Congrès inter. Science Neurologique, Brussells, 141–154.Google Scholar
  20. 19.
    M. A. Kennard and L. F. Nims, Changes in the normal EEG of Macaca Mulatta with growth, J. Neurophysiol. 5:325.Google Scholar
  21. 20.
    P. Laget and R. Salbreaux, Atlas a Eléctroencephal-ographie infantile, Masson & Cie, Paris (1967).Google Scholar
  22. 21.
    G. C. Lairy, ed., Evaluation of EEG from birth to adulthood, in: Handbook of EEG and Clinical Neurophysiology, ed. in Chief, J. A. Remond, Vol.6, Pt. B. Elsevier, Amserdam (1975),Google Scholar
  23. 22.
    D. Lindsley, Brain potentials in children and adults, Science, 84:354 (1936).CrossRefGoogle Scholar
  24. 23.
    D. Lindsley, A longitudinal study of the occipital alpha rhythm in normal children, J. Genet. Psychol. 55:197 (1939).Google Scholar
  25. 24.
    K. A. Melin, The development of the electrical activity of the brain and its changes under pathological conditions, Schweiz. Arch. Neurol. Psychiat. 71:217 (1953)Google Scholar
  26. 25.
    G. Pampiglione, Alertness and sleep in young pigs. Electroenceph. Clin. Neurophysiol. 13:872 (1961).Google Scholar
  27. 26.
    G. Pampiglione, Demonstration of a technique for recording EEG in young animals and man, J. Physiol. 162:10P–11P (1962).Google Scholar
  28. 27.
    G. Pampiglione, Development of cerebral function in the dog, Butterworth, London (1963).Google Scholar
  29. 28.
    G. Pampiglione, Brain development and the EEG of normal children of various ethnical groups, Brit. Med. J. 2:573 (1965).CrossRefGoogle Scholar
  30. 29.
    G. Pampiglione, Some aspect of the development of cerebral function in mammals, Proc. Roy. Soc. Med. 64:429 (1971).Google Scholar
  31. 30.
    G. Pampiglione, EEG studies in animals with experimental malnutrition, in: Brain function and malnutrition, eds. J. W. Prescott, M. S. Read and D. B. Coursin, Wiley & Sons, New York (1975).Google Scholar
  32. 31.
    G. Pampiglione, Development of Phythmic EEG activities in infancy (Waking State), Rev. EEG Neurophysiol. 7:3, 327 (1977).Google Scholar
  33. 32.
    A. H. Parmelee, W. H. Wenner, Y. Akiyama, E. Stern and J. Flescher, EEG and brain maturation, in: Regional Maturation in Early Life, ed. A. Minkowski, Blackwell, London, 456–476 (1967).Google Scholar
  34. 33.
    B. S. Platt, G. Pampiglione and R. J. C. Stewart, Experimental protein calorie deficiency: Clinical, Electroencephalograph and Neuropathological changes in pigs, Dev. Med. Child. Neurol. 7:9 (1965).Google Scholar
  35. 34.
    W. W. Prawdicz-Neminski, Zur Kenntnis der elektrischen und Geweben des tierischen Organismus, Elektro-cerebrogramm der Saugetiere, Pflugers Arch. ges. Physiol. 209:31/42 (1925).Google Scholar
  36. 35.
    D. Samson-Dollfuss, L’EEG du premature jusqu’a l’age de 3 mois et du nouveau-ne a terme, Foulon, Paris (1955).Google Scholar
  37. 36.
    F. J. Schulte and E. F. Bell, Bioelectric brain development: Atlas of EEG power spectra in infants and young children, Neuropadiatrie 4:30 (1973).CrossRefGoogle Scholar
  38. 37.
    J. R. Smith, The EEG during normal infancy and child-hood I–III, J. Genet. Physiol. 53:431,455 and 471 (1938).Google Scholar
  39. 38.
    S. Terlecki, C. Richardson, R. Bradley, D. Buntain, G. B. Young and G. Pampiglione, A congenital disease of lambs clinically similar to inherited cerebellar cortical atrophy (Daft Lamb Disease), Brit. Vet. J. 134:299 (1978).Google Scholar
  40. 39.
    G. Van Wegenen and H. R. Catchpole, Physiological growth of the Rhesus monkey (Macaca Mulatta), Amer. J. Phys. Anthrop. 14:245 (1956).CrossRefGoogle Scholar
  41. 40.
    S. S. Werner, J. F. Stockard and R. G. Bickford, Atlas of neonatal EEG, Raven Press (1977).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • G. Pampiglione
    • 1
  1. 1.The Hospital for Sick ChildrenLondon, WC1UK

Personalised recommendations